A new integer and reversible color transform for an efficient extension of phase correlation method to color images

The standard phase correlation method has been known as a powerful image processing technique for grey levels image registration and motion estimation, yet its use has, in general, been limited to grey level images. Here, we propose an efficient extension of phase correlation technique, with global and inter color channel measures. Our proposed extension is based on a new reversible and integer color space transformation.

[1]  George Wolberg,et al.  Robust image registration using log-polar transform , 2000, Proceedings 2000 International Conference on Image Processing (Cat. No.00CH37101).

[2]  Hassan Foroosh,et al.  Extension of phase correlation to subpixel registration , 2002, IEEE Trans. Image Process..

[3]  C. Eddie Moxey,et al.  Hypercomplex correlation techniques for vector images , 2003, IEEE Trans. Signal Process..

[4]  D. Aboutajdine,et al.  A preserving color space transformation for correlation between two images using FFT , 2003, Proceedings of the 3rd IEEE International Symposium on Signal Processing and Information Technology (IEEE Cat. No.03EX795).

[5]  Ahmed El Oirrak,et al.  Affine invariant descriptors for color images using Fourier series , 2003, Pattern Recognit. Lett..

[6]  Riccardo Bernardini,et al.  Phase correlation algorithm for multicomponent images , 2000, IS&T/SPIE Electronic Imaging.

[7]  B. N. Chatterji,et al.  An FFT-based technique for translation, rotation, and scale-invariant image registration , 1996, IEEE Trans. Image Process..

[8]  Michel Defrise,et al.  Symmetric Phase-Only Matched Filtering of Fourier-Mellin Transforms for Image Registration and Recognition , 1994, IEEE Trans. Pattern Anal. Mach. Intell..

[9]  S. Sangwine Fourier transforms of colour images using quaternion or hypercomplex, numbers , 1996 .

[10]  C. Morandi,et al.  Registration of Translated and Rotated Images Using Finite Fourier Transforms , 1987, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[11]  S. Sangwine,et al.  Vector phase correlation , 2001 .

[12]  C. D. Kuglin,et al.  The phase correlation image alignment method , 1975 .