Robust Pressure-Actuated Liquid Metal Devices Showing Reconfigurable Electromagnetic Effects at GHz Frequencies

Pressure-actuated liquid metal devices are demonstrated for reconfigurable electromagnetic fundamentals at GHz frequencies, including tunable dipole antennas, switchable shielding with 35-dB attenuation, ~ 30-dB polarizer attenuation, and ~ 40° diffraction from a linear grating. In addition to a wide variety of electromagnetic effects, these devices are further advanced by: being highly physically flexible; in use of nontoxic GaInSn (68.5% Ga, 21.5% In, and 10.0% Sn) alloy as enabled by a sealed closed system with an acidic vapor background; and nonalloying/corrosion-resistant carbon inks for electrical connection. Collectively, this work addresses a wide variety of electromagnetic fundamentals, and the device construction advances required for real-world applications.

[1]  Wyatt Prunty Apertures , 2015 .

[2]  J. Heikenfeld,et al.  Large area and low power dielectrowetting optical shutter with local deterministic fluid film breakup , 2013 .

[3]  Takao Someya,et al.  Building bionic skin , 2013, IEEE Spectrum.

[4]  Yasin Damgaci,et al.  A frequency reconfigurable antenna based on digital microfluidics. , 2013, Lab on a chip.

[5]  M. Dickey,et al.  Ultrastretchable Fibers with Metallic Conductivity Using a Liquid Metal Alloy Core , 2013 .

[6]  Michael D. Dickey,et al.  Self‐Healing Stretchable Wires for Reconfigurable Circuit Wiring and 3D Microfluidics , 2013, Advanced materials.

[7]  S. K. Ting,et al.  Metamaterial tunable filter with liquid metal , 2013, 2013 IEEE 26th International Conference on Micro Electro Mechanical Systems (MEMS).

[8]  R. L. Haupt,et al.  Reconfigurable Antennas , 2013, IEEE Antennas and Propagation Magazine.

[9]  Jason Heikenfeld,et al.  Reconfigurable liquid metal circuits by Laplace pressure shaping , 2012 .

[10]  G. Lazzi,et al.  Flexible Liquid Metal Alloy (EGaIn) Microstrip Patch Antenna , 2012, IEEE Transactions on Antennas and Propagation.

[11]  Chang-Jin Kim,et al.  Characterization of Nontoxic Liquid-Metal Alloy Galinstan for Applications in Microdevices , 2012, Journal of Microelectromechanical Systems.

[12]  L. Jofre,et al.  Circular Beam-Steering Reconfigurable Antenna With Liquid Metal Parasitics , 2012, IEEE Transactions on Antennas and Propagation.

[13]  John A Rogers,et al.  Three-dimensional nanonetworks for giant stretchability in dielectrics and conductors , 2012, Nature Communications.

[14]  M. Dickey,et al.  A frequency shifting liquid metal antenna with pressure responsiveness , 2011 .

[15]  C. Menon,et al.  Mechanically reconfigurable antennas using electro-active polymers (EAPs) , 2011, 2011 IEEE International Symposium on Antennas and Propagation (APSURSI).

[16]  Frank B. Gross,et al.  Frontiers in Antennas: Next Generation Design & Engineering , 2010 .

[17]  Yonggang Huang,et al.  Waterproof AlInGaP optoelectronics on stretchable substrates with applications in biomedicine and robotics. , 2010, Nature materials.

[18]  Horace Lamb,et al.  On the Reflection and Transmission of Electric Waves by a Metallic Grating , 2010 .

[19]  P. Sen,et al.  A Fast Liquid-Metal Droplet Microswitch Using EWOD-Driven Contact-Line Sliding , 2009, Journal of microelectromechanical systems.

[20]  T. Jones,et al.  Iop Publishing Journal of Micromechanics and Microengineering Optimized Liquid Dep Droplet Dispensing , 2022 .

[21]  J. Bernhard Reconfigurable Antennas , 2006, Reconfigurable Antennas.

[22]  J. Hibberd,et al.  A galinstan expansion femtosyringe for microinjection of eukaryotic organelles and prokaryotes , 1999, Nature Biotechnology.

[23]  Chang-Jin Kim,et al.  A Fast LiquidMetal Droplet Microswitch Using EWOD-Driven Contact-Line Sliding , 2009 .

[24]  Jean Berthier,et al.  Microdrops and digital microfluidics , 2008 .

[25]  M. Dickey,et al.  Reversibly Deformable and Mechanically Tunable Fluidic Antennas , 2022 .