Simple one-dimensional integral representations for two-loop self-energies: the master diagram
暂无分享,去创建一个
[1] A. Erdélyi,et al. Higher Transcendental Functions , 1954 .
[2] R. Cutkosky. Singularities and Discontinuities of Feynman Amplitudes , 1960 .
[3] J. B. Tausk,et al. Two-loop self-energy diagrams with different masses and the momentum expansion , 1993 .
[4] G. Lepage. A new algorithm for adaptive multidimensional integration , 1978 .
[5] Reduction of general two-loop self-energies to standard scalar integrals☆ , 1993, hep-ph/9310358.
[6] W. R. Buckland,et al. Multiple Hypergeometric Functions and Applications , 1977 .
[7] D. Kreimer,et al. The master two-loop two-point function. The general case , 1991 .
[8] J. Fleischer,et al. Application of conformal mapping and Padé approximants (ωP′s) to the calculation of various two-loop Feynman diagrams , 1994, hep-ph/9407235.
[9] Gerard 't Hooft,et al. Scalar One Loop Integrals , 1979 .
[10] J. B. Tausk,et al. On the numerical evaluation of scalar two-loop self-energy diagrams , 1994 .
[11] P. W. Karlsson,et al. Multiple Gaussian hypergeometric series , 1985 .
[12] B. C. Carlson. Special functions of applied mathematics , 1977 .
[13] S. Mandelstam. Unitarity Condition Below Physical Thresholds in the Normal and Anomalous Cases , 1960 .
[14] T. MacRobert. Higher Transcendental Functions , 1955, Nature.
[15] J. Bij,et al. Massive two-loop diagrams: The Higgs propagator , 1994, hep-ph/9405418.