Fixed-Parameter Tractable Canonization and Isomorphism Test for Graphs of Bounded Treewidth

We give a fixed-parameter tractable algorithm that, given a parameter k and two graphs G<sub>1</sub>, G<sub>2</sub>, either concludes that one of these graphs has treewidth at least k, or determines whether G<sub>1</sub> and G<sub>2</sub> are isomorphic. The running time of the algorithm on an n-vertex graph is 2<sup>O(k5 log k)</sup> · n<sup>5</sup>, and this is the first fixed-parameter algorithm for Graph Isomorphism parameterized by treewidth. Our algorithm in fact solves the more general canonization problem. We namely design a procedure working in 2<sup>OO(k5 log k)</sup> · n<sup>5</sup> time that, for a given graph G on n vertices, either concludes that the treewidth of G is at least k, or finds an isomorphism-invariant construction term - an algebraic expression that encodes G together with a tree decomposition of G of width O(k<sup>4</sup>). Hence, a canonical graph isomorphic to G can be constructed by simply evaluating the obtained construction term, while the isomorphism test reduces to verifying whether the computed construction terms for G<sub>1</sub> and G<sub>2</sub> are equal.

[1]  Ken-ichi Kawarabayashi,et al.  Graph and map isomorphism and all polyhedral embeddings in linear time , 2008, STOC.

[2]  Stefan Arnborg,et al.  Canonical representations of partial 2- and 3-trees , 1992, BIT.

[3]  Hans L. Boblaender Polynomial algorithms for graph isomorphism and chromatic index on partial k -trees , 1990 .

[4]  Hans L. Bodlaender,et al.  A Partial k-Arboretum of Graphs with Bounded Treewidth , 1998, Theor. Comput. Sci..

[5]  Robert E. Tarjan,et al.  Decomposition by clique separators , 1985, Discret. Math..

[6]  I. S. Filotti,et al.  A polynomial-time algorithm for determining the isomorphism of graphs of fixed genus , 1980, STOC '80.

[7]  Adam Bouland,et al.  On Tractable Parameterizations of Graph Isomorphism , 2012, IPEC.

[8]  Eugene M. Luks,et al.  Isomorphism of graphs of bounded valence can be tested in polynomial time , 1980, 21st Annual Symposium on Foundations of Computer Science (sfcs 1980).

[9]  Neil Robertson,et al.  Graph Minors .XIII. The Disjoint Paths Problem , 1995, J. Comb. Theory B.

[10]  Frank Harary,et al.  Graph Theory , 2016 .

[11]  Paul D. Seymour,et al.  Graph Minors. XVI. Excluding a non-planar graph , 2003, J. Comb. Theory, Ser. B.

[12]  Michal Pilipczuk,et al.  Minimum bisection is fixed parameter tractable , 2013, STOC.

[13]  Hans L. Bodlaender A linear time algorithm for finding tree-decompositions of small treewidth , 1993, STOC '93.

[14]  Michael R. Fellows,et al.  Open Problems in Parameterized and Exact Computation - IWPEC 2006 , 2006 .

[15]  RobertsonNeil,et al.  Graph minors. XIII , 1994 .

[16]  Jörg Flum,et al.  Parameterized Complexity Theory (Texts in Theoretical Computer Science. An EATCS Series) , 2006 .

[17]  Bruno Courcelle,et al.  Graph Structure and Monadic Second-Order Logic - A Language-Theoretic Approach , 2012, Encyclopedia of mathematics and its applications.

[18]  Anne Berry,et al.  An Introduction to Clique Minimal Separator Decomposition , 2010, Algorithms.

[19]  László Babai,et al.  Canonical labeling of graphs , 1983, STOC.

[20]  Yota Otachi Isomorphism for Graphs of Bounded Connected-Path-Distance-Width , 2012, ISAAC.

[21]  L. Weinberg,et al.  A Simple and Efficient Algorithm for Determining Isomorphism of Planar Triply Connected Graphs , 1966 .

[22]  Hans L. Bodlaender,et al.  Necessary Edges in k-Chordalisations of Graphs , 2003, J. Comb. Optim..

[23]  Koichi Yamazaki,et al.  Isomorphism for Graphs of Bounded Distance Width , 1997, Algorithmica.

[24]  Hans L. Bodlaender,et al.  Polynomial Algorithms for Graph Isomorphism and Chromatic Index on Partial k-Trees , 1988, J. Algorithms.

[25]  Gary L. Miller,et al.  Isomorphism testing for graphs of bounded genus , 1980, STOC '80.

[26]  John E. Hopcroft,et al.  Linear time algorithm for isomorphism of planar graphs (Preliminary Report) , 1974, STOC '74.

[27]  Jörg Flum,et al.  Parameterized Complexity Theory , 2006, Texts in Theoretical Computer Science. An EATCS Series.

[28]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[29]  Éva Tardos,et al.  Algorithm design , 2005 .

[30]  Jacques Carlier,et al.  New Lower and Upper Bounds for Graph Treewidth , 2003, WEA.

[31]  Uwe Schöning Graph Isomorphism is in the Low Hierarchy , 1988, J. Comput. Syst. Sci..

[32]  Stefan Kratsch,et al.  Isomorphism for Graphs of Bounded Feedback Vertex Set Number , 2010, SWAT.

[33]  Alfred V. Aho,et al.  The Design and Analysis of Computer Algorithms , 1974 .

[34]  I. S. Filotti,et al.  A Polynomial-time Algorithm for Determining the Isomorphism of Graphs of Fixed Genus (Working Paper) , 1980, STOC 1980.

[35]  Robert E. Tarjan,et al.  Isomorphism of Planar Graphs , 1972, Complexity of Computer Computations.

[36]  Ton Kloks Treewidth, Computations and Approximations , 1994, Lecture Notes in Computer Science.

[37]  René van Bevern,et al.  Myhill–Nerode Methods for Hypergraphs , 2015, Algorithmica.

[38]  Robert E. Tarjan,et al.  A V log V Algorithm for Isomorphism of Triconnected Planar Graphs , 1973, J. Comput. Syst. Sci..

[39]  Yota Otachi,et al.  Reduction Techniques for Graph Isomorphism in the Context of Width Parameters , 2014, SWAT.

[40]  Michael R. Fellows,et al.  Fundamentals of Parameterized Complexity , 2013 .

[41]  Hanns-Georg Leimer,et al.  Optimal decomposition by clique separators , 1993, Discret. Math..

[42]  Dimitrios M. Thilikos,et al.  Parameterized Complexity and the Understanding, Design, and Analysis of Heuristics (NII Shonan Meeting 2013-2) , 2013, NII Shonan Meet. Rep..

[43]  I. Ponomarenko The isomorphism problem for classes of graphs closed under contraction , 1991 .

[44]  Dániel Marx,et al.  Structure theorem and isomorphism test for graphs with excluded topological subgraphs , 2011, STOC '12.