Evolutionary computation for adaptive quantum device design

As Noisy Intermediate-Scale Quantum (NISQ) devices grow in number of qubits, determining good or even adequate parameter configurations for a given application, or for device calibration, becomes a cumbersome task. We present here an evolutionary algorithm that allows for the automatic tuning of the parameters of a spin network (an arrangement of coupled qubits) for a given task. We exemplify the use of this algorithm with the design schemes for two quantum devices: a quantum wire and a multi-qubit gate. The designs obtained by our algorithm exploit the natural dynamics of the system and perform such tasks with fidelities of 99.7% for the state transfer through a quantum wire and 99.8% for the application of a controlled-phase gate. Such designs were previously unknown, with this wire scheme able to transfer quantum information with high fidelity in a shorter time than previous spin chain designs of the same length. With such encouraging results, our approach has the potential to become a powerful technique in the design and calibration of NISQ devices.

[1]  I. Jex,et al.  Quantum State Transfer and Network Engineering , 2013 .

[2]  Luc Vinet,et al.  How to construct spin chains with perfect state transfer , 2011, 1110.6474.

[3]  Marta P. Estarellas,et al.  Topologically protected localised states in spin chains , 2016, Scientific Reports.

[4]  Dino Sejdinovic,et al.  Quantum device fine-tuning using unsupervised embedding learning , 2020, New Journal of Physics.

[5]  Darrell Whitley,et al.  A genetic algorithm tutorial , 1994, Statistics and Computing.

[6]  Daniel Burgarth,et al.  Conclusive and arbitrarily perfect quantum-state transfer using parallel spin-chain channels , 2005 .

[7]  Gregory S. Hornby,et al.  Automated Antenna Design with Evolutionary Algorithms , 2006 .

[8]  Sougato Bose,et al.  Quantum communication through spin chain dynamics: an introductory overview , 2007, 0802.1224.

[9]  Yongmei Huang,et al.  Satellite-to-ground quantum key distribution , 2017, Nature.

[10]  Matthias Christandl,et al.  Perfect state transfer in quantum spin networks. , 2004, Physical review letters.

[11]  R. Schoenfeld,et al.  Real time magnetic field sensing and imaging using a single spin in diamond. , 2010, Physical review letters.

[12]  R. Le Targat,et al.  Quantum Simulation of Frustrated Classical Magnetism in Triangular Optical Lattices , 2011, Science.

[13]  Scott M. Thede An introduction to genetic algorithms , 2004 .

[14]  John Preskill,et al.  Quantum computing and the entanglement frontier , 2012, 1203.5813.

[15]  Travis S. Humble,et al.  Quantum supremacy using a programmable superconducting processor , 2019, Nature.

[16]  Leif Katsuo Oxenløwe,et al.  Orbital Angular Momentum States Enabling Fiber-based High-dimensional Quantum Communication , 2018, Physical Review Applied.

[17]  Benjamin J Eggleton,et al.  Topological Optical Waveguiding in Silicon and the Transition between Topological and Trivial Defect States. , 2016, Physical review letters.

[18]  G. Almeida,et al.  Spin chains for two-qubit teleportation , 2018, Physical Review A.

[19]  Ronald L. Walsworth,et al.  Nanoscale magnetometry with NV centers in diamond , 2013 .

[20]  Matthias Christandl,et al.  Information processing in quantum spin systems , 2004 .

[21]  F. Schmidt-Kaler,et al.  Implementation of the Deutsch–Jozsa algorithm on an ion-trap quantum computer , 2003, Nature.

[22]  John Preskill,et al.  Quantum Computing in the NISQ era and beyond , 2018, Quantum.

[23]  P. Zoller,et al.  A scalable quantum computer with ions in an array of microtraps , 2000, Nature.

[24]  T. Spiller,et al.  Robust quantum entanglement generation and generation-plus-storage protocols with spin chains , 2016, 1612.05097.

[25]  Electron wavepacket propagation in a chain of coupled quantum dots , 2003, quant-ph/0311041.

[26]  Hod Lipson,et al.  Distilling Free-Form Natural Laws from Experimental Data , 2009, Science.

[27]  H. Rabitz,et al.  All possible coupling schemes in XY spin chains for perfect state transfer , 2011, 1101.1156.

[28]  Noah Linden,et al.  Propagation of quantum information through a spin system , 2004 .

[29]  T. Spiller,et al.  Effect of perturbations on information transfer in spin chains , 2010, 1007.4746.

[31]  Joachim Stolze,et al.  Spin chains as perfect quantum state mirrors , 2005 .

[32]  Dong He,et al.  Satellite-based entanglement distribution over 1200 kilometers , 2017, Science.

[33]  L. Hollenberg,et al.  Sensing of fluctuating nanoscale magnetic fields using nitrogen-vacancy centers in diamond. , 2009, Physical review letters.

[34]  Xin Yao,et al.  Evolving artificial neural networks , 1999, Proc. IEEE.

[35]  Ben Evans,et al.  Aerodynamic optimisation of a hypersonic reentry vehicle based on solution of the Boltzmann–BGK equation and evolutionary optimisation , 2017 .

[36]  Matthias Christandl,et al.  Perfect Transfer of Arbitrary States in Quantum Spin Networks , 2005 .

[37]  G. M. Nikolopoulos,et al.  Perfect state transfer in networks of arbitrary topology and coupling configuration , 2007 .

[38]  T. Spiller,et al.  Freezing distributed entanglement in spin chains , 2007, 0708.2794.

[39]  A. E. Eiben,et al.  From evolutionary computation to the evolution of things , 2015, Nature.

[40]  Jian Wang,et al.  Multidimensional entanglement transport through single-mode fiber , 2020, Science Advances.

[41]  S. Longhi Topological pumping of edge states via adiabatic passage , 2019, Physical Review B.

[42]  S. Bose Quantum communication through an unmodulated spin chain. , 2002, Physical review letters.

[43]  G. Kurizki,et al.  Quantum technologies with hybrid systems , 2015, Proceedings of the National Academy of Sciences.