Genetic algorithm based optimization design of miniature piezoelectric forceps

This paper studies about a simulation of a derived model for the steady-state force-deflection behavior of a miniature piezoelectric forceps actuator (PFA) based on complementary strain energy. Utilizing a genetic algorithm (GA) based as a design tool to simulate and optimize the physical design parameters of the PFA to get the optimum grasping force-deflection end tip of the PFA within desired physical constraints. Simulation studies of the optimized PFA parameters based on GA are presented. The piezoelectric forceps is remotely controlled miniature gripper and potentially to be used in tele-surgery, minimally invasive surgery, MEMS industrial assembly line, pick and place hazardous materials in tight and small space.

[1]  Diann Brei,et al.  Force-Deflection Behavior of Individual Unimorph Piezoceramic C-Block Actuators , 1996, Aerospace.

[2]  S M Tanaka,et al.  A new mechanical stimulator for cultured bone cells using piezoelectric actuator. , 1999, Journal of biomechanics.

[3]  E. Crawley,et al.  Use of piezoelectric actuators as elements of intelligent structures , 1987 .

[4]  Mohammad Noori,et al.  Experimental study of THUNDER: a new generation of piezoelectric actuators , 1999, Smart Structures.

[5]  Bingen Yang,et al.  Static Deflection Behavior of a Piezoelectric Forceps , 2003 .

[6]  G. J. Weng,et al.  A Micromechanics-Based Hysteresis Model for Ferroelectric Ceramics , 2001 .

[7]  Heinz Mühlenbein,et al.  Predictive Models for the Breeder Genetic Algorithm I. Continuous Parameter Optimization , 1993, Evolutionary Computation.

[8]  Dragan Damjanovic,et al.  Electrostrictive and Piezoelectric Materials for Actuator Applications , 1992 .

[9]  Harvey Thomas Banks,et al.  Evaluation criteria for THUNDER actuators , 1999, Smart Structures.

[10]  Ralph C. Smith,et al.  Displacement models for THUNDER actuators having general loads and boundary conditions , 2001, SPIE Smart Structures and Materials + Nondestructive Evaluation and Health Monitoring.

[11]  R. Budynas,et al.  Advanced Strength and Applied Stress Analysis , 1977 .

[12]  Ralph C. Smith,et al.  Low-field and high-field characterization of THUNDER actuators , 2001, SPIE Smart Structures and Materials + Nondestructive Evaluation and Health Monitoring.

[13]  Gregory N. Washington Smart aperture antennas , 1996 .

[14]  Diann Brei,et al.  Analytical Dynamic Performance Modeling for Individual C-block Actuators , 1999 .

[15]  Moon K. Kwak,et al.  Development of lightweight THUNDER with fiber composite layers , 2000, Smart Structures.

[16]  Gregory N. Washington,et al.  Modeling and Control of a Singly Curved Active Aperture Antenna Using Curved Piezoceramic Actuators , 2000 .

[17]  Harley H. Cudney,et al.  An active engine mount with a piezoelectric stacked actuator , 1994 .

[18]  Hwan-Sik Yoon,et al.  Piezoceramic actuated aperture antennae , 1998 .

[19]  Dhananjay K. Samak,et al.  Design of high force, high displacement actuators for helicopter rotors , 1996 .

[20]  G. L’italien,et al.  Device for the application of a dynamic biaxially uniform and isotropic strain to a flexible cell culture membrane , 1994, Journal of orthopaedic research : official publication of the Orthopaedic Research Society.

[21]  David E. Goldberg,et al.  Genetic Algorithms in Search Optimization and Machine Learning , 1988 .

[22]  L. Darrell Whitley,et al.  The GENITOR Algorithm and Selection Pressure: Why Rank-Based Allocation of Reproductive Trials is Best , 1989, ICGA.

[23]  Mohamad S. Qatu,et al.  Theories and analyses of thin and moderately thick laminated composite curved beams , 1993 .

[24]  Christopher Niezrecki,et al.  Power characterization of THUNDER actuators as underwater propulsors , 2001, SPIE Smart Structures and Materials + Nondestructive Evaluation and Health Monitoring.

[25]  James E. Baker,et al.  Reducing Bias and Inefficienry in the Selection Algorithm , 1987, ICGA.

[26]  William W. Clark,et al.  Development of a piezoelectrically actuated cell stretching device , 2000, Smart Structures.

[27]  Bingen Yang,et al.  Data-glove-based fuzzy control of piezoelectric forceps actuator , 2004, SPIE Smart Structures and Materials + Nondestructive Evaluation and Health Monitoring.

[28]  John H. Holland,et al.  Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence , 1992 .