New trends in coupled simulations featuring domain decomposition and metacomputing

In this paper we test the feasibility of coupling two heterogeneous mathematical modeling integrated within two different codes residing on distant sites. A prototype is developed using Schwarz type domain decomposition as the mathematical tool for coupling. The computing technology for coupling uses a CORBA environment to implement a distributed client-server programming model. Domain decomposition methods are well suited to reducing complex physical phenomena into a sequence of parallel subproblems in time and space. The whole process is easily tuned to underlying hardware requirements.

[1]  Laurence Halpern,et al.  Méthodes de relaxation d'ondes (SWR) pour l'équation de la chaleur en dimension 1 , 2003 .

[2]  John F. Karpovich,et al.  The Legion Resource Management System , 1999, JSSPP.

[3]  Jim Farley Java distributed computing , 1998 .

[4]  Steve Vinoski,et al.  Advanced CORBA® Programming with C++ , 1999 .

[5]  Bjarne Stroustrup,et al.  C++ Programming Language , 1986, IEEE Softw..

[6]  Lee R. Nackman,et al.  Scientific and Engineering C , 1995 .

[7]  Gráinne Foley,et al.  CORBA – Common Object Request Broker Architecture , 2001 .

[8]  Ken Arnold,et al.  The Java Programming Language , 1996 .

[9]  W. Gropp,et al.  Using MPI-2nd Edition , 1999 .

[10]  D. Gannon,et al.  PARDIS: CORBA-based Architecture for Application-Level Parallel Distributed Computation , 1997, ACM/IEEE SC 1997 Conference (SC'97).

[11]  Guillaume Alléon,et al.  Programming SCI Clusters Using Parallel CORBA , 1999, Scalable Coherent Interface.

[12]  Ian T. Foster,et al.  The data grid: Towards an architecture for the distributed management and analysis of large scientific datasets , 2000, J. Netw. Comput. Appl..

[13]  Frédéric Nataf,et al.  The optimized order 2 method : Application to convection-diffusion problems , 2001, Future Gener. Comput. Syst..

[14]  Jon Sigel,et al.  CORBA Fundamentals and Programming , 1996 .

[15]  M. Gander,et al.  Optimal Convergence for Overlapping and Non-Overlapping Schwarz Waveform Relaxation , 1999 .

[16]  John F. Karpovich,et al.  Resource management in Legion , 1999, Future Gener. Comput. Syst..