High-order explicit Runge-Kutta pairs with low stage order

Abstract To illustrate his idea for propagating an approximate solution of an initial value problem, Runge (1895) included a pair of formulas or orders 1 and 2 (a 1,2 pair) whose difference could be used to estimate the error incurred in each step. Later work by Merson (1957) stimulated the search for p − 1, p pairs (p > 3) of Runge-Kutta formulas which would be more efficient. A scheme developed by Butcher (1963) conveniently tabulated the algebraic conditions imposed by the requirements of accuracy. Yet the direct solution of these conditions to obtain explicit Runge-Kutta pairs has remained a more challenging problem. Families of different types have been discovered through continuing research, and some of these are briefly reviewed. A recent approach (Verner, 1994) to solving the order conditions is illustrated with some new parametric families of 7,8 and 8,9 pairs.

[1]  A. R. Curtis High-order Explicit Runge-Kutta Formulae, Their Uses, and Limitations , 1975 .

[2]  P. J. Prince,et al.  Global error estimation with runge-kutta triples , 1989 .

[3]  J. Butcher Coefficients for the study of Runge-Kutta integration processes , 1963, Journal of the Australian Mathematical Society.

[4]  A. R. Curtis,et al.  An eighth order Runge-Kutta process with eleven function evaluations per step , 1970 .

[5]  J. Dormand,et al.  A family of embedded Runge-Kutta formulae , 1980 .

[6]  John C. Butcher The non-existence of ten stage eighth order explicit Runge-Kutta methods , 1985 .

[7]  J. Dormand,et al.  High order embedded Runge-Kutta formulae , 1981 .

[8]  W. Kutta Beitrag zur Naherungsweisen Integration Totaler Differentialgleichungen , 1901 .

[9]  John C. Butcher,et al.  On the attainable order of Runge-Kutta methods , 1965 .

[10]  J. Butcher The Numerical Analysis of Ordinary Di erential Equa-tions , 1986 .

[11]  C. Runge Ueber die numerische Auflösung von Differentialgleichungen , 1895 .

[12]  J. H. Verner,et al.  Some Runge-Kutta formula pairs , 1991 .

[13]  J. Verner Explicit Runge–Kutta Methods with Estimates of the Local Truncation Error , 1978 .

[14]  E. Fehlberg Classical Fifth-, Sixth-, Seventh-, and Eighth-Order Runge-Kutta Formulas with Stepsize Control , 1968 .

[15]  Philip W. Sharp,et al.  Completely imbedded Runge-Kutta pairs , 1994 .

[16]  J. Butcher Implicit Runge-Kutta processes , 1964 .

[17]  Manuel Calvo,et al.  A new embedded pair of Runge-Kutta formulas of orders 5 and 6 , 1990 .

[18]  Ernst Hairer,et al.  A Runge-Kutta Method of Order 10 , 1978 .

[19]  J. H. Verner,et al.  Some Explicit Runge”Kutta Methods of High Order , 1972 .

[20]  Ch. Tsitouras,et al.  A general family of explicit Runge-Kutta pairs of orders 6(5) , 1996 .