Geodesic patterns

Geodesic curves in surfaces are not only minimizers of distance, but they are also the curves of zero geodesic (sideways) curvature. It turns out that this property makes patterns of geodesics the basic geometric entity when dealing with the cladding of a freeform surface with wooden panels which do not bend sideways. Likewise a geodesic is the favored shape of timber support elements in freeform architecture, for reasons of manufacturing and statics. Both problem areas are fundamental in freeform architecture, but so far only experimental solutions have been available. This paper provides a systematic treatment and shows how to design geodesic patterns in different ways: The evolution of geodesic curves is good for local studies and simple patterns; the level set formulation can deal with the global layout of multiple patterns of geodesics; finally geodesic vector fields allow us to interactively model geodesic patterns and perform surface segmentation into panelizable parts.

[1]  Philippe Block,et al.  Advances in architectural geometry , 2010 .

[2]  Leonidas J. Guibas,et al.  Shape Decomposition using Modal Analysis , 2009, Comput. Graph. Forum.

[3]  YANQING CHEN,et al.  Algorithm 8 xx : CHOLMOD , supernodal sparse Cholesky factorization and update / downdate ∗ , 2006 .

[4]  Johannes Wallner,et al.  Freeform surfaces from single curved panels , 2008, ACM Trans. Graph..

[5]  Konrad Polthier,et al.  QuadCover ‐ Surface Parameterization using Branched Coverings , 2007, Comput. Graph. Forum.

[6]  Frédo Durand,et al.  Image and depth from a conventional camera with a coded aperture , 2007, ACM Trans. Graph..

[7]  Daud Sutton,et al.  Islamic Design: A Genius for Geometry , 2007 .

[8]  Yves Weinand,et al.  Geodesic Lines on Free-Form Surfaces - Optimized Grids for Timber Rib Shells , 2006 .

[9]  Alla Sheffer,et al.  D‐Charts: Quasi‐Developable Mesh Segmentation , 2005, Comput. Graph. Forum.

[10]  Hans-Peter Seidel,et al.  Mesh segmentation driven by Gaussian curvature , 2005, The Visual Computer.

[11]  Lars Spuybroek,et al.  NOX: Machining Architecture , 2004 .

[12]  Kaj Madsen,et al.  Methods for Non-Linear Least Squares Problems (2nd ed.) , 2004 .

[13]  Markus H. Gross,et al.  Multi‐scale Feature Extraction on Point‐Sampled Surfaces , 2003, Comput. Graph. Forum.

[14]  Ronald Fedkiw,et al.  Level set methods and dynamic implicit surfaces , 2002, Applied mathematical sciences.

[15]  Julius Natterer,et al.  The Roof Structure Expodach" at the World Exhibition Hanover. , 2002 .

[16]  Dennis R. Shelden Digital surface representation and the constructibility of Gehry's architecture , 2002 .

[17]  Kaj Madsen,et al.  Methods for Non-Linear Least Squares Problems , 1999 .

[18]  J A Sethian,et al.  Computing geodesic paths on manifolds. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[19]  Konrad Polthier,et al.  Straightest geodesics on polyhedral surfaces , 2006, SIGGRAPH Courses.

[20]  R. Kimmel,et al.  Geodesic Active Contours , 1995, Proceedings of IEEE International Conference on Computer Vision.

[21]  Yijie Han,et al.  Shortest paths on a polyhedron , 1990, SCG '90.

[22]  Stuart Geman,et al.  Statistical methods for tomographic image reconstruction , 1987 .

[23]  H. Piaggio Differential Geometry of Curves and Surfaces , 1952, Nature.

[24]  H. Müller,et al.  Über die Striktionslinien von Kurvenscharen , 1941 .

[25]  Hlawka Geometrie der Gewebe , 1939 .

[26]  K. Mayrhofer,et al.  Über Sechseckgewebe aus Geodätischen , 1931 .

[27]  I. Holopainen Riemannian Geometry , 1927, Nature.