Theory of three-dimensional nanocrescent light harvesters.

The optical properties of three-dimensional crescent-shaped gold nanoparticles are studied using a transformation optics methodology. The polarization insensitive, highly efficient, and tunable light harvesting ability of singular nanocrescents is demonstrated. We extend our approach to more realistic blunt nanostructures, showing the robustness of their plasmonic performance against geometric imperfections. Finally, we provide analytical and numerical insights into the sensitivity of the device to radiative losses and nonlocal effects. Our theoretical findings reveal an underlying relation between structural bluntness and spatial dispersion in this particular nanoparticle configuration.

[1]  J. Pendry,et al.  Collection and concentration of light by touching spheres: a transformation optics approach. , 2010, Physical review letters.

[2]  S. Maier Plasmonics: Fundamentals and Applications , 2007 .

[3]  Benno Radt,et al.  Optically Addressable Nanostructured Capsules , 2004 .

[4]  Yannick Sonnefraud,et al.  Nanoparticle-assisted stimulated-emission-depletion nanoscopy. , 2012, ACS nano.

[5]  Alexandre Aubry,et al.  Surface plasmons and singularities. , 2010, Nano letters.

[6]  Luke P. Lee,et al.  Plasmon tuning and local field enhancement maximization of the nanocrescent , 2008, Nanotechnology.

[7]  Naomi J. Halas,et al.  Nanoshells to nanoeggs to nanocups: optical properties of reduced symmetry core–shell nanoparticles beyond the quasistatic limit , 2008 .

[8]  Naomi J. Halas,et al.  Geometrical parameters controlling sensitivity of nanoshell plasmon resonances to changes in dielectric environment , 2004 .

[9]  Stefan A. Maier,et al.  High-resolution mapping of electron-beam-excited plasmon modes in lithographically defined gold nanostructures. , 2011, Nano letters.

[10]  Luke P. Lee,et al.  Optical properties of the crescent-shaped nanohole antenna. , 2009, Nano letters.

[11]  Luke P. Lee,et al.  Nanophotonic crescent moon structures with sharp edge for ultrasensitive biomolecular detection by local electromagnetic field enhancement effect. , 2005, Nano letters.

[12]  Stefan A. Maier,et al.  Broadband plasmonic device concentrating the energy at the nanoscale: The crescent-shaped cylinder , 2010 .

[13]  P. Nordlander,et al.  A Hybridization Model for the Plasmon Response of Complex Nanostructures , 2003, Science.

[14]  J. Pendry,et al.  Transformation optics description of touching metal nanospheres , 2012 .

[15]  Martijn Wubs,et al.  Modified field enhancement and extinction by plasmonic nanowire dimers due to nonlocal response. , 2011, Optics express.

[16]  Yu Luo,et al.  Transformation-optics description of plasmonic nanostructures containing blunt edges/corners: from symmetric to asymmetric edge rounding. , 2012, ACS nano.

[17]  N. Halas,et al.  Metallic nanoshells with semiconductor cores: optical characteristics modified by core medium properties. , 2010, ACS nano.

[18]  R. T. Hill,et al.  Probing the Ultimate Limits of Plasmonic Enhancement , 2012, Science.

[19]  L. Novotný,et al.  Antennas for light , 2011 .

[20]  Stefan A. Maier,et al.  Conformal transformation applied to plasmonics beyond the quasistatic limit , 2010 .

[21]  J. Dionne,et al.  Quantum plasmon resonances of individual metallic nanoparticles , 2012, Nature.

[22]  J. Baumberg,et al.  Dressing plasmons in particle-in-cavity architectures , 2011, CLEO: 2011 - Laser Science to Photonic Applications.

[23]  Aeneas Wiener,et al.  Nonlocal effects in the nanofocusing performance of plasmonic tips. , 2012, Nano letters.

[24]  R. Stafford,et al.  Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[25]  D. R. Smith,et al.  Transformation Optics and Subwavelength Control of Light , 2012, Science.

[26]  Dang Yuan Lei,et al.  Broadband light harvesting nanostructures robust to edge bluntness. , 2012, Physical review letters.

[27]  J. Hafner,et al.  Symmetry breaking in individual plasmonic nanoparticles. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[28]  J. Pendry,et al.  Transformation-optics description of nonlocal effects in plasmonic nanostructures. , 2012, Physical review letters.

[29]  Naomi J. Halas,et al.  Playing with Plasmons: Tuning the Optical Resonant Properties of Metallic Nanoshells , 2005 .

[30]  Glenn P. Goodrich,et al.  Scattering Spectra of Single Gold Nanoshells , 2004 .

[31]  S. Maier,et al.  Plasmonic nanoantennas: fundamentals and their use in controlling the radiative properties of nanoemitters. , 2011, Chemical reviews.

[32]  Naomi J. Halas,et al.  Linear optical properties of gold nanoshells , 1999 .

[33]  J. Pendry,et al.  Plasmonic light-harvesting devices over the whole visible spectrum. , 2010, Nano letters.

[34]  Thomas A. Klar,et al.  Gold nanoshells improve single nanoparticle molecular sensors , 2004 .

[35]  N. Halas,et al.  Reshaping the plasmonic properties of an individual nanoparticle. , 2009, Nano letters.

[36]  H. Atwater,et al.  Plasmonics for improved photovoltaic devices. , 2010, Nature materials.

[37]  Milton Kerker,et al.  Scattering of Electromagnetic Waves from Two Concentric Spheres , 1951 .

[38]  Emil Prodan,et al.  Electronic Structure and Optical Properties of Gold Nanoshells , 2003 .

[39]  Rostislav Bukasov,et al.  Highly tunable infrared extinction properties of gold nanocrescents. , 2007, Nano letters.

[40]  R. Berger,et al.  Sensitivity of crescent-shaped metal nanoparticles to attachment of dielectric colloids. , 2009, Nano letters.

[41]  Shimon Weiss,et al.  Enhanced Absorption Induced by a Metallic Nano-Shell , 2003 .

[42]  Younan Xia,et al.  Metal Nanostructures with Hollow Interiors , 2003 .

[43]  R. W. Christy,et al.  Optical Constants of the Noble Metals , 1972 .