Histopathological growth patterns as a candidate biomarker for immunomodulatory therapy.

[1]  Yves Sucaet,et al.  International consensus guidelines for scoring the histopathological growth patterns of liver metastasis , 2017, British Journal of Cancer.

[2]  R. Ganss Tumour vessel normalization and immune checkpoint blockade: a new synergism , 2017, Immunology and cell biology.

[3]  A. Griffioen,et al.  Anti-angiogenesis for cancer revisited: Is there a role for combinations with immunotherapy? , 2017, Angiogenesis.

[4]  F. Stossi,et al.  Mutual Regulation of Tumour Vessel Normalization and Immunostimulatory Reprogramming , 2017, Nature.

[5]  E. Skolnik,et al.  PLCε1 regulates SDF-1α–induced lymphocyte adhesion and migration to sites of inflammation , 2017, Proceedings of the National Academy of Sciences.

[6]  I. Mellman,et al.  Elements of cancer immunity and the cancer–immune set point , 2017, Nature.

[7]  J. Larkin,et al.  Vessel co‐option is common in human lung metastases and mediates resistance to anti‐angiogenic therapy in preclinical lung metastasis models , 2016, The Journal of pathology.

[8]  A. Giobbie-Hurder,et al.  Angiopoietin-2 as a Biomarker and Target for Immune Checkpoint Therapy , 2016, Cancer Immunology Research.

[9]  G. G. Van den Eynden,et al.  Vessel co-option mediates resistance to anti-angiogenic therapy in liver metastases , 2016, Nature Medicine.

[10]  Suzanne F. Jones,et al.  Atezolizumab in combination with bevacizumab enhances antigen-specific T-cell migration in metastatic renal cell carcinoma , 2016, Nature Communications.

[11]  G. Yousef,et al.  Co-option of Liver Vessels and Not Sprouting Angiogenesis Drives Acquired Sorafenib Resistance in Hepatocellular Carcinoma , 2016, Journal of the National Cancer Institute.

[12]  D. Sargent,et al.  Clinical trial designs incorporating predictive biomarkers. , 2016, Cancer treatment reviews.

[13]  I. De Meester,et al.  Circulating Stromal Cell-Derived Factor 1α Levels in Heart Failure: A Matter of Proper Sampling , 2015, PloS one.

[14]  J. Tímár,et al.  Mechanism of tumour vascularization in experimental lung metastases , 2015, The Journal of pathology.

[15]  J. Hodson,et al.  Performance of prognostic scores in predicting long‐term outcome following resection of colorectal liver metastases , 2014, The British journal of surgery.

[16]  E. Batlle,et al.  TGF-beta in CAF-mediated tumor growth and metastasis. , 2014, Seminars in cancer biology.

[17]  D. Fearon The Carcinoma-Associated Fibroblast Expressing Fibroblast Activation Protein and Escape from Immune Surveillance , 2014, Cancer Immunology Research.

[18]  M. Kris,et al.  Serpins Promote Cancer Cell Survival and Vascular Co-Option in Brain Metastasis , 2014, Cell.

[19]  Michael Simons,et al.  Divergent angiocrine signals from vascular niche balance liver regeneration and fibrosis , 2013, Nature.

[20]  D. Schuppan,et al.  Evolving therapies for liver fibrosis. , 2013, The Journal of clinical investigation.

[21]  Csaba Bödör,et al.  Structural analysis of oval‐cell–mediated liver regeneration in rats , 2012, Hepatology.

[22]  G. G. Van den Eynden,et al.  The histological growth pattern of colorectal cancer liver metastases has prognostic value , 2012, Clinical & Experimental Metastasis.

[23]  B. Döme,et al.  Lack of Angiogenesis in Experimental Brain Metastases , 2011, Journal of neuropathology and experimental neurology.

[24]  G. Coukos,et al.  The parallel lives of angiogenesis and immunosuppression: cancer and other tales , 2011, Nature Reviews Immunology.

[25]  Rakesh K. Jain,et al.  Principles and mechanisms of vessel normalization for cancer and other angiogenic diseases , 2011, Nature Reviews Drug Discovery.

[26]  P. Carmeliet,et al.  HRG inhibits tumor growth and metastasis by inducing macrophage polarization and vessel normalization through downregulation of PlGF. , 2011, Cancer cell.

[27]  Zev Rosenwaks,et al.  Inductive angiocrine signals from sinusoidal endothelium are required for liver regeneration , 2010, Nature.

[28]  M. van Engeland,et al.  VHL and HIF signalling in renal cell carcinogenesis , 2010, The Journal of pathology.

[29]  S. Schnitt,et al.  Classification and prognosis of invasive breast cancer: from morphology to molecular taxonomy , 2010, Modern Pathology.

[30]  F. Lemaigre,et al.  Organogenesis and development of the liver. , 2010, Developmental cell.

[31]  F. He,et al.  Liver Sinusoidal Endothelial Cell Lectin, LSECtin, Negatively Regulates Hepatic T-Cell Immune Response , 2009, Gastroenterology.

[32]  N. Sibson,et al.  The Vascular Basement Membrane as “Soil” in Brain Metastasis , 2009, PloS one.

[33]  L. Rubbia‐Brandt,et al.  Dangerous halo after neoadjuvant chemotherapy and two‐step hepatectomy for colorectal liver metastases , 2009, The British journal of surgery.

[34]  Andrew W. Taylor Review of the activation of TGF‐β in immunity , 2008, Journal of leukocyte biology.

[35]  M. Kloor,et al.  The localization and density of immune cells in primary tumors of human metastatic colorectal cancer shows an association with response to chemotherapy. , 2009, Cancer immunity.

[36]  Fabian Kiessling,et al.  Vascular normalization in Rgs5-deficient tumours promotes immune destruction , 2008, Nature.

[37]  Lieping Chen,et al.  Tolerogenic maturation of liver sinusoidal endothelial cells promotes B7‐homolog 1‐dependent CD8+ T cell tolerance , 2007, Hepatology.

[38]  Yuman Fong,et al.  Actual 10-year survival after resection of colorectal liver metastases defines cure. , 2007, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[39]  D. Jayne,et al.  The influence of invasive growth pattern and microvessel density on prognosis in colorectal cancer and colorectal liver metastases , 2007, British Journal of Cancer.

[40]  I. Jonassen,et al.  Angiogenesis-independent tumor growth mediated by stem-like cancer cells , 2006, Proceedings of the National Academy of Sciences.

[41]  M. Oertel,et al.  Cell competition leads to a high level of normal liver reconstitution by transplanted fetal liver stem/progenitor cells. , 2006, Gastroenterology.

[42]  A. Nicholson,et al.  Gene expression signature for angiogenic and nonangiogenic non-small-cell lung cancer , 2005, Oncogene.

[43]  E. van Marck,et al.  Breast adenocarcinoma liver metastases, in contrast to colorectal cancer liver metastases, display a non-angiogenic growth pattern that preserves the stroma and lacks hypoxia , 2004, British Journal of Cancer.

[44]  C. Colpaert,et al.  Cutaneous breast cancer deposits show distinct growth patterns with different degrees of angiogenesis, hypoxia and fibrin deposition , 2003, Histopathology.

[45]  B. Döme,et al.  A Novel Concept of Glomeruloid Body Formation in Experimental Cerebral Metastases , 2003, Journal of neuropathology and experimental neurology.

[46]  E. van Marck,et al.  Lack of angiogenesis in lymph node metastases of carcinomas is growth pattern‐dependent , 2002, Histopathology.

[47]  E. van Marck,et al.  Liver metastases from colorectal adenocarcinomas grow in three patterns with different angiogenesis and desmoplasia , 2001, The Journal of pathology.

[48]  J. Rossant,et al.  Liver Organogenesis Promoted by Endothelial Cells Prior to Vascular Function , 2001, Science.

[49]  Guido Gerken,et al.  Local control of the immune response in the liver , 2000, Immunological reviews.

[50]  R. Semelka,et al.  Perilesional enhancement of hepatic metastases: correlation between MR imaging and histopathologic findings-initial observations. , 2000, Radiology.

[51]  B. Sykes,et al.  Solution structure and basis for functional activity of stromal cell‐derived factor‐1; dissociation of CXCR4 activation from binding and inhibition of HIV‐1 , 1997, The EMBO journal.

[52]  M Buyse,et al.  Non-small-cell lung carcinoma tumor growth without morphological evidence of neo-angiogenesis. , 1997, The American journal of pathology.

[53]  S. Love,et al.  ‘Revertant’ DCIS in human axillary breast carcinoma metastases , 1997, The Journal of pathology.

[54]  H. Kemperman,et al.  αV Integrins on HT-29 Colon Carcinoma Cells: Adhesion to Fibronectin Is Mediated Solely by Small Amounts of αVβ6, and αVβ5 Is Codistributed with Actin Fibers , 1997 .

[55]  T. Springer,et al.  A highly efficacious lymphocyte chemoattractant, stromal cell-derived factor 1 (SDF-1) , 1996, The Journal of experimental medicine.