Beneficial effects of 3D structured electrodes for the fast-charging of lithium-ion batteries

Lithium-ion batteries are the dominating electrochemical energy storage technology for battery electric vehicles. However, additional optimization is needed to meet the requirements of the automotive industry regarding energy density, cost, safety and fast charging performance. In conventional electrode designs there is a trade-off be-tween energy density and rate capability. Recently, 3D structuring techniques, such as laser perforation

[1]  A. Jossen,et al.  Enhanced performance and lifetime of lithium-ion batteries by laser structuring of graphite anodes , 2021, Applied Energy.

[2]  T. Gao,et al.  Interplay of Lithium Intercalation and Plating on a Single Graphite Particle , 2021, Joule.

[3]  Hyeong-Jin Kim,et al.  Challenges, laser processing and electrochemical characteristics on application of ultra-thick electrode for high-energy lithium-ion battery , 2021 .

[4]  N. Dasgupta,et al.  Efficient fast-charging of lithium-ion batteries enabled by laser-patterned three-dimensional graphite anode architectures , 2020 .

[5]  M. Wohlfahrt‐Mehrens,et al.  Influence of the Electrolyte Salt Concentration on the Rate Capability of Ultra‐Thick NCM 622 Electrodes , 2020, Batteries & Supercaps.

[6]  A. Latz,et al.  An Electrochemical Model of Lithium Plating and Stripping in Lithium Ion Batteries , 2020 .

[7]  Jinwang Tan,et al.  Simulating dendrite growth in lithium batteries under cycling conditions , 2020 .

[8]  M. Zaeh,et al.  Paving the way for industrial ultrafast laser structuring of lithium-ion battery electrodes by increasing the scanning accuracy , 2020 .

[9]  Andrew M. Colclasure,et al.  Enabling fast charging of lithium-ion batteries through secondary- /dual- pore network: Part I - Analytical diffusion model , 2020, Electrochimica Acta.

[10]  Andrew M. Colclasure,et al.  Enabling fast charging of lithium-ion batteries through secondary-/dual- pore network: Part II - numerical model , 2020 .

[11]  M. Wohlfahrt‐Mehrens,et al.  Manufacturing Process for Improved Ultra‐Thick Cathodes in High‐Energy Lithium‐Ion Batteries , 2020, Energy Technology.

[12]  M. Wohlfahrt‐Mehrens,et al.  Influence of Conductive Additives and Binder on the Impedance of Lithium-Ion Battery Electrodes: Effect of Morphology , 2020 .

[13]  M. Zaeh,et al.  Enhanced Fast Charging and Reduced Lithium-Plating by Laser-Structured Anodes for Lithium-Ion Batteries , 2019, Journal of The Electrochemical Society.

[14]  S. Funke,et al.  Designing car bans for sustainable transportation , 2019, Nature Sustainability.

[15]  Jun Lu,et al.  Commercialization of Lithium Battery Technologies for Electric Vehicles , 2019, Advanced Energy Materials.

[16]  Hyeong-Jin Kim,et al.  Performance enhancement of Li-ion battery by laser structuring of thick electrode with low porosity , 2019, Journal of Industrial and Engineering Chemistry.

[17]  Jiajun Wang,et al.  Fabrication of Low‐Tortuosity Ultrahigh‐Area‐Capacity Battery Electrodes through Magnetic Alignment of Emulsion‐Based Slurries , 2018, Advanced Energy Materials.

[18]  Zonghai Chen,et al.  Revealing the Rate-Limiting Li-Ion Diffusion Pathway in Ultrathick Electrodes for Li-Ion Batteries. , 2018, The journal of physical chemistry letters.

[19]  Cheng Lin,et al.  A Comparative Study on Open Circuit Voltage Models for Lithium-ion Batteries , 2018, Chinese Journal of Mechanical Engineering.

[20]  Ingo Manke,et al.  Generation of virtual lithium-ion battery electrode microstructures based on spatial stochastic modeling , 2018, Computational Materials Science.

[21]  A. Jossen,et al.  Increasing the Discharge Rate Capability of Lithium-Ion Cells with Laser-Structured Graphite Anodes , 2018 .

[22]  Hui Pang,et al.  Experimental Data-Driven Parameter Identification and State of Charge Estimation for a Li-Ion Battery Equivalent Circuit Model , 2018 .

[23]  W. Pfleging,et al.  A review of laser electrode processing for development and manufacturing of lithium-ion batteries , 2018 .

[24]  Richard Barney Carlson,et al.  Enabling fast charging – A battery technology gap assessment , 2017 .

[25]  A. Loges,et al.  Thermal conductivity of Li-ion batteries and their electrode configurations – A novel combination of modelling and experimental approach , 2017 .

[26]  Zhijia Du,et al.  Understanding limiting factors in thick electrode performance as applied to high energy density Li-ion batteries , 2017, Journal of Applied Electrochemistry.

[27]  Guangyuan Zheng,et al.  Nanoscale Nucleation and Growth of Electrodeposited Lithium Metal. , 2017, Nano letters.

[28]  Thomas Wetzel,et al.  A study on specific heat capacities of Li-ion cell components and their influence on thermal management , 2016 .

[29]  A. Latz,et al.  Thick electrodes for Li-ion batteries: A model based analysis , 2016 .

[30]  Linsen Li,et al.  High-performance battery electrodes via magnetic templating , 2016, Nature Energy.

[31]  Florian Bouville,et al.  Magnetically aligned graphite electrodes for high-rate performance Li-ion batteries , 2016, Nature Energy.

[32]  Arnulf Latz,et al.  Influence of local lithium metal deposition in 3D microstructures on local and global behavior of Lithium-ion batteries , 2016 .

[33]  Hao Li,et al.  Optimized Temperature Effect of Li‐Ion Diffusion with Layer Distance in Li(NixMnyCoz)O2 Cathode Materials for High Performance Li‐Ion Battery , 2016 .

[34]  Rosario Miceli,et al.  How is the spread of the Electric Vehicles? , 2015, 2015 IEEE 1st International Forum on Research and Technologies for Society and Industry Leveraging a better tomorrow (RTSI).

[35]  Volker Schmidt,et al.  Stochastic 3D modeling of the microstructure of lithium-ion battery anodes via Gaussian random fields on the sphere , 2015 .

[36]  Jochen Zausch,et al.  Multiscale modeling of lithium ion batteries: thermal aspects , 2015, Beilstein journal of nanotechnology.

[37]  Kyle C. Smith,et al.  Design of Bi-Tortuous, Anisotropic Graphite Anodes for Fast Ion-Transport in Li-Ion Batteries , 2015, 1504.01803.

[38]  Junjie Gu,et al.  The effects of electrode thickness on the electrochemical and thermal characteristics of lithium ion battery , 2015 .

[39]  S. Martinet,et al.  Cost modeling of lithium‐ion battery cells for automotive applications , 2015 .

[40]  Martin Wietschel,et al.  Modelling market diffusion of electric vehicles with real world driving data — Part I: Model structure and validation , 2014 .

[41]  W. Bessler,et al.  Low-temperature charging of lithium-ion cells part I: Electrochemical modeling and experimental investigation of degradation behavior , 2014 .

[42]  Jochen Zausch,et al.  Thermodynamic derivation of a Butler-Volmer model for intercalation in Li-ion batteries , 2013 .

[43]  Yet-Ming Chiang,et al.  Design of Battery Electrodes with Dual‐Scale Porosity to Minimize Tortuosity and Maximize Performance , 2013, Advanced materials.

[44]  Jochen Zausch,et al.  Thermodynamic consistent transport theory of Li-ion batteries , 2011 .

[45]  M. Itagaki,et al.  Electrochemical Impedance and Complex Capacitance to Interpret Electrochemical Capacitor , 2007 .

[46]  Bruce Dunn,et al.  Hierarchical battery electrodes based on inverted opal structures , 2002 .

[47]  T. Mattfeldt Stochastic Geometry and Its Applications , 1996 .

[48]  R. Adler,et al.  The Geometry of Random Fields , 1982 .

[49]  S. Jurisson US Department of Energy , 2021, The Grants Register 2022.

[50]  A. Jossen,et al.  Modeling and Simulation of Pore Morphology Modifications using Laser-Structured Graphite Anodes in Lithium-Ion Batteries , 2019, Journal of The Electrochemical Society.

[51]  Kevin G. Gallagher,et al.  Optimizing areal capacities through understanding the limitations of lithium-ion electrodes , 2016 .

[52]  Hubert A. Gasteiger,et al.  Tortuosity Determination of Battery Electrodes and Separators by Impedance Spectroscopy , 2016 .

[53]  Göran Lindbergh,et al.  Electrochemical Characterization and Temperature Dependency of Mass-Transport Properties of LiPF6 in EC:DEC , 2015 .

[54]  Chaoyang Wang,et al.  Li-Ion Cell Operation at Low Temperatures , 2013 .

[55]  Chaoyang Wang,et al.  Analysis of Electrochemical and Thermal Behavior of Li-Ion Cells , 2003 .