A dynamic adaptation scheme for general 3-D hybrid meshes

Hybrid meshes consisting of all types of three dimensional elements (prisms, hexahedra, pyramids and tetrahedra) pose a challenge to current mesh adaptation methods. Primary issues addressed are (i) the complex topology of the mesh which makes division/coarsening more difficult, (ii) the minimization of interface elements such as pyramids, (iii) the complex and memory consuming data structures, and (iv) simplification of the implementation of the adaptation algorithm. Local refinement and coarsening are applied using special division rules and templates which result in a relatively simple implementation of adaptation and in minimization of the number of pyramids. An appropriate data structure is presented which handles all four types of elements and minimizes required memory. Case-independent linear scaling of the required CPU time and memory for adaptation is demonstrated.

[1]  Yannis Kallinderis,et al.  A 3D Finite-Volume Scheme for the Euler Equations on Adaptive Tetrahedral Grids , 1994 .

[2]  Bharat K. Soni,et al.  Solution adaptive grid strategies based on point redistribution , 2000 .

[3]  Yannis Kallinderis,et al.  Hybrid Prismatic/Tetrahedral Grid Generation for Viscous Flows Around Complex Geometries , 1996 .

[4]  K. Nakahashi,et al.  Hybrid Prismatic/Tetrahedral Grid Generation for Viscous Flow Applications , 1998 .

[5]  P. George,et al.  3D Delaunay mesh generation coupled with an advancing-front approach , 1998 .

[6]  T. Gerhold,et al.  Calculation of Complex Three-Dimensional Configurations Employing the DLR-tau-Code , 1997 .

[7]  Ángel Plaza,et al.  Graph‐based data structures for skeleton‐based refinement algorithms , 2001 .

[8]  Jirí Felcman Grid refinement/alignment in 3D flow computations , 2003, Math. Comput. Simul..

[9]  Y. Kallinderis Prismatic/tetrahedral grid generation for complex geometries , 1996 .

[10]  Donald Ervin Knuth,et al.  The Art of Computer Programming , 1968 .

[11]  Y. Kallinderis,et al.  A 3-D finite-volume method for the Navier-Stokes equations with adaptive hybrid grids , 1996 .

[12]  Yannis Kallinderis,et al.  Hybrid Grids and Their Applications , 1999 .

[13]  Y. Kallinderis Grid adaptation by redistribution and local embedding , 1996 .

[14]  Yannis Kallinderis,et al.  A new adaptive algorithm for turbulent flows , 1992 .

[15]  G. Carey,et al.  Local refinement of simplicial grids based on the skeleton , 2000 .

[16]  Tommy Minyard,et al.  Adaptive hybrid grid methods , 2000 .

[17]  Y. Kallinderis,et al.  Adaptive refinement-coarsening scheme for three-dimensional unstructured meshes , 1993 .

[18]  Y. Kallinderis,et al.  Adaptive prismatic-tetrahedral grid refinement and redistribution for viscous flows , 1996 .

[19]  Luca Formaggia Data structures for unstructured mesh generation , 1999 .

[20]  J. Brackbill,et al.  Adaptive zoning for singular problems in two dimensions , 1982 .

[21]  M. Rivara A grid generator based on 4‐triangles conforming mesh‐refinement algorithms , 1987 .

[22]  Steven J. Owen,et al.  PYRAMID ELEMENTS FOR MAINTAINING TETRAHEDRA TO HEXAHEDRA CONFORMABILITY , 2000 .

[23]  Ivo Babuška,et al.  The h-p version of the finite element method , 1986 .

[24]  Rupak Biswas,et al.  Tetrahedral and hexahedral mesh adaptation for CFD problems , 1998 .

[25]  Rainald Löhner,et al.  Mesh adaptation in fluid mechanics , 1995 .

[26]  Dimitri J. Mavriplis,et al.  Adaptive Meshing Techniques for Viscous Flow Calculations on Mixed Element Unstructured Meshes , 1997 .

[27]  Leszek Demkowicz,et al.  Toward a universal h-p adaptive finite element strategy , 1989 .

[28]  Bharat K. Soni,et al.  Handbook of Grid Generation , 1998 .

[29]  Yannis Kallinderis,et al.  Adaptive hybrid (prismatic–tetrahedral) grids for incompressible flows , 1998 .

[30]  Philippe R.B. Devloo,et al.  Adaptive finite element methods for the analysis of inviscid compressible flow: Part I. Fast refinement/unrefinement and moving mesh methods for unstructured meshes , 1986 .

[31]  Yannis Kallinderis,et al.  Octree-Advancing Front Method for Generation of Unstructured Surface and Volume Meshes , 1997 .

[32]  J. Hansen,et al.  Review of some adaptive node-movement techniques in finite-element and finite-difference solutions of partial differential equations , 1991 .

[33]  Traian Iliescu A 3D flow-aligning algorithm for convection-diffusion problems , 1999 .

[34]  C.R.E. de Oliveira,et al.  Tetrahedral mesh optimisation and adaptivity for steady-state and transient finite element calculations , 2001 .

[35]  S. Popinet Gerris: a tree-based adaptive solver for the incompressible Euler equations in complex geometries , 2003 .

[36]  Russ D. Rausch,et al.  Spatial adaptation procedures on tetrahedral meshes for unsteady aerodynamic flow calculations , 1993 .

[37]  Kenneth G. Powell,et al.  A tree-based adaptive scheme for solution of the equations of gas dynamics and magnetohydrodynamics , 1994 .

[38]  Steven J. Owen,et al.  Formation of pyramid elements for hexahedra to tetrahedra transitions , 2001 .

[39]  Rupak Biswas,et al.  A new procedure for dynamic adaption of three-dimensional unstructured grids , 1993 .

[40]  Pascal Frey,et al.  Transient fixed point‐based unstructured mesh adaptation , 2003 .