Numerical algorithm for the model describing anomalous diffusion in expanding media

We provide a numerical algorithm for the model characterizing anomalous diffusion in expanding media, which is derived in [F. Le Vot, E. Abad, and S. B. Yuste, Phys. Rev. E {\bf96} (2017) 032117]. The Sobolev regularity for the equation is first established. Then we use the finite element method to discretize the Laplace operator and present error estimate of the spatial semi-discrete scheme based on the regularity of the solution; the backward Euler convolution quadrature is developed to approximate Riemann-Liouville fractional derivative and error estimates for the fully discrete scheme are established by using the continuity of solution. Finally, the numerical experiments verify the effectiveness of the algorithm.

[1]  Bangti Jin,et al.  Two Fully Discrete Schemes for Fractional Diffusion and Diffusion-Wave Equations with Nonsmooth Data , 2016, SIAM J. Sci. Comput..

[2]  Anatoly A. Alikhanov,et al.  A new difference scheme for the time fractional diffusion equation , 2014, J. Comput. Phys..

[3]  Barkai,et al.  From continuous time random walks to the fractional fokker-planck equation , 2000, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[4]  I. Podlubny Fractional differential equations , 1998 .

[5]  Bangti Jin,et al.  Error Analysis of a Finite Element Method for the Space-Fractional Parabolic Equation , 2014, SIAM J. Numer. Anal..

[6]  Kassem Mustapha,et al.  FEM for time-fractional diffusion equations, novel optimal error analyses , 2016, Math. Comput..

[7]  Charles M. Elliott,et al.  Error estimates with smooth and nonsmooth data for a finite element method for the Cahn-Hilliard equation , 1992 .

[8]  Xianjuan Li,et al.  A Space-Time Spectral Method for the Time Fractional Diffusion Equation , 2009, SIAM J. Numer. Anal..

[9]  W. Deng,et al.  Langevin dynamics for a Lévy walk with memory. , 2018, Physical review. E.

[10]  G. Burton Sobolev Spaces , 2013 .

[11]  Bangti Jin,et al.  Subdiffusion with a time-dependent coefficient: Analysis and numerical solution , 2018, Math. Comput..

[12]  Bangti Jin,et al.  An analysis of the Rayleigh–Stokes problem for a generalized second-grade fluid , 2014, Numerische Mathematik.

[13]  S. B. Yuste,et al.  Standard and fractional Ornstein-Uhlenbeck process on a growing domain. , 2019, Physical review. E.

[14]  Bangti Jin,et al.  Correction of High-Order BDF Convolution Quadrature for Fractional Evolution Equations , 2017, SIAM J. Sci. Comput..

[15]  Fawang Liu,et al.  Finite difference approximations for the fractional Fokker–Planck equation , 2009 .

[16]  W. Deng,et al.  Fractional compound Poisson processes with multiple internal states , 2017, 1703.03237.

[17]  Ian W. Turner,et al.  A Stable Fast Time-Stepping Method for Fractional Integral and Derivative Operators , 2017, J. Sci. Comput..

[18]  W. Deng,et al.  Subdiffusion in an external force field. , 2019, Physical review. E.

[19]  Chuanju Xu,et al.  Finite difference/spectral approximations for the time-fractional diffusion equation , 2007, J. Comput. Phys..

[20]  J. Hesthaven,et al.  Local discontinuous Galerkin methods for fractional diffusion equations , 2013 .

[21]  Buyang Li,et al.  Sharp convergence rates of time discretization for stochastic time-fractional PDEs subject to additive space-time white noise , 2017, Math. Comput..

[22]  Vidar Thomée,et al.  Nonsmooth data error estimates for approximations of an evolution equation with a positive-type memory term , 1996, Math. Comput..

[23]  J. Pasciak,et al.  Error analysis of semidiscrete finite element methods for inhomogeneous time-fractional diffusion , 2013, 1307.1068.

[24]  C. Lubich Convolution quadrature and discretized operational calculus. I , 1988 .

[25]  Raytcho D. Lazarov,et al.  Error Estimates for a Semidiscrete Finite Element Method for Fractional Order Parabolic Equations , 2012, SIAM J. Numer. Anal..

[26]  V. E. Tarasov,et al.  Fractional Fokker-Planck equation for fractal media. , 2005, Chaos.

[27]  C. Lubich Convolution quadrature and discretized operational calculus. II , 1988 .

[28]  E. Barkai,et al.  Fractional Fokker-Planck equation, solution, and application. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[29]  S. A. El-Wakil,et al.  Fractional Fokker–Planck equation , 2000 .

[30]  Santos B. Yuste,et al.  Weighted average finite difference methods for fractional diffusion equations , 2004, J. Comput. Phys..

[31]  S. B. Yuste,et al.  Continuous-time random-walk model for anomalous diffusion in expanding media. , 2017, Physical review. E.

[32]  Weihua Deng,et al.  Finite Element Method for the Space and Time Fractional Fokker-Planck Equation , 2008, SIAM J. Numer. Anal..

[33]  S. B. Yuste,et al.  Diffusion in an expanding medium: Fokker-Planck equation, Green's function, and first-passage properties. , 2016, Physical review. E.

[34]  S. B. Yuste,et al.  Continuous-time random walks and Fokker-Planck equation in expanding media , 2018, Physical Review E.