暂无分享,去创建一个
[1] Bangti Jin,et al. Two Fully Discrete Schemes for Fractional Diffusion and Diffusion-Wave Equations with Nonsmooth Data , 2016, SIAM J. Sci. Comput..
[2] Anatoly A. Alikhanov,et al. A new difference scheme for the time fractional diffusion equation , 2014, J. Comput. Phys..
[3] Barkai,et al. From continuous time random walks to the fractional fokker-planck equation , 2000, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.
[4] I. Podlubny. Fractional differential equations , 1998 .
[5] Bangti Jin,et al. Error Analysis of a Finite Element Method for the Space-Fractional Parabolic Equation , 2014, SIAM J. Numer. Anal..
[6] Kassem Mustapha,et al. FEM for time-fractional diffusion equations, novel optimal error analyses , 2016, Math. Comput..
[7] Charles M. Elliott,et al. Error estimates with smooth and nonsmooth data for a finite element method for the Cahn-Hilliard equation , 1992 .
[8] Xianjuan Li,et al. A Space-Time Spectral Method for the Time Fractional Diffusion Equation , 2009, SIAM J. Numer. Anal..
[9] W. Deng,et al. Langevin dynamics for a Lévy walk with memory. , 2018, Physical review. E.
[10] G. Burton. Sobolev Spaces , 2013 .
[11] Bangti Jin,et al. Subdiffusion with a time-dependent coefficient: Analysis and numerical solution , 2018, Math. Comput..
[12] Bangti Jin,et al. An analysis of the Rayleigh–Stokes problem for a generalized second-grade fluid , 2014, Numerische Mathematik.
[13] S. B. Yuste,et al. Standard and fractional Ornstein-Uhlenbeck process on a growing domain. , 2019, Physical review. E.
[14] Bangti Jin,et al. Correction of High-Order BDF Convolution Quadrature for Fractional Evolution Equations , 2017, SIAM J. Sci. Comput..
[15] Fawang Liu,et al. Finite difference approximations for the fractional Fokker–Planck equation , 2009 .
[16] W. Deng,et al. Fractional compound Poisson processes with multiple internal states , 2017, 1703.03237.
[17] Ian W. Turner,et al. A Stable Fast Time-Stepping Method for Fractional Integral and Derivative Operators , 2017, J. Sci. Comput..
[18] W. Deng,et al. Subdiffusion in an external force field. , 2019, Physical review. E.
[19] Chuanju Xu,et al. Finite difference/spectral approximations for the time-fractional diffusion equation , 2007, J. Comput. Phys..
[20] J. Hesthaven,et al. Local discontinuous Galerkin methods for fractional diffusion equations , 2013 .
[21] Buyang Li,et al. Sharp convergence rates of time discretization for stochastic time-fractional PDEs subject to additive space-time white noise , 2017, Math. Comput..
[22] Vidar Thomée,et al. Nonsmooth data error estimates for approximations of an evolution equation with a positive-type memory term , 1996, Math. Comput..
[23] J. Pasciak,et al. Error analysis of semidiscrete finite element methods for inhomogeneous time-fractional diffusion , 2013, 1307.1068.
[24] C. Lubich. Convolution quadrature and discretized operational calculus. I , 1988 .
[25] Raytcho D. Lazarov,et al. Error Estimates for a Semidiscrete Finite Element Method for Fractional Order Parabolic Equations , 2012, SIAM J. Numer. Anal..
[26] V. E. Tarasov,et al. Fractional Fokker-Planck equation for fractal media. , 2005, Chaos.
[27] C. Lubich. Convolution quadrature and discretized operational calculus. II , 1988 .
[28] E. Barkai,et al. Fractional Fokker-Planck equation, solution, and application. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.
[29] S. A. El-Wakil,et al. Fractional Fokker–Planck equation , 2000 .
[30] Santos B. Yuste,et al. Weighted average finite difference methods for fractional diffusion equations , 2004, J. Comput. Phys..
[31] S. B. Yuste,et al. Continuous-time random-walk model for anomalous diffusion in expanding media. , 2017, Physical review. E.
[32] Weihua Deng,et al. Finite Element Method for the Space and Time Fractional Fokker-Planck Equation , 2008, SIAM J. Numer. Anal..
[33] S. B. Yuste,et al. Diffusion in an expanding medium: Fokker-Planck equation, Green's function, and first-passage properties. , 2016, Physical review. E.
[34] S. B. Yuste,et al. Continuous-time random walks and Fokker-Planck equation in expanding media , 2018, Physical Review E.