Constructive $D$-module Theory with \textsc{Singular}

We overview numerous algorithms in computational $D$-module theory together with the theoretical background as well as the implementation in the computer algebra system \textsc{Singular}. We discuss new approaches to the computation of Bernstein operators, of logarithmic annihilator of a polynomial, of annihilators of rational functions as well as complex powers of polynomials. We analyze algorithms for local Bernstein-Sato polynomials and also algorithms, recovering any kind of Bernstein-Sato polynomial from partial knowledge of its roots. We address a novel way to compute the Bernstein-Sato polynomial for an affine variety algorithmically. All the carefully selected nontrivial examples, which we present, have been computed with our implementation. We address such applications as the computation of a zeta-function for certain integrals and revealing the algebraic dependence between pairwise commuting elements.

[1]  Toshinori Oaku,et al.  Local Bernstein-Sato ideals: Algorithm and examples , 2010, J. Symb. Comput..

[2]  Viktor Levandovskyy,et al.  Computational D-module theory with singular, comparison with other systems and two new algorithms , 2008, ISSAC '08.

[3]  Jean-Charles Faugère,et al.  Efficient Computation of Zero-Dimensional Gröbner Bases by Change of Ordering , 1993, J. Symb. Comput..

[4]  Viktor Levandovskyy,et al.  Principal intersection and bernstein-sato polynomial of an affine variety , 2009, ISSAC '09.

[5]  Hans Schönemann,et al.  SINGULAR: a computer algebra system for polynomial computations , 2001, ACCA.

[6]  Jesús Gago-Vargas,et al.  Comparison of theoretical complexities of two methods for computing annihilating ideals of polynomials , 2005, J. Symb. Comput..

[7]  Nero Budur,et al.  Bernstein–Sato polynomials of arbitrary varieties , 2006, Compositio Mathematica.

[8]  Mathias Schulze A normal form algorithm for the Brieskorn lattice , 2004, J. Symb. Comput..

[9]  Volker Weispfenning,et al.  Non-Commutative Gröbner Bases in Algebras of Solvable Type , 1990, J. Symb. Comput..

[10]  V. Levandovskyy,et al.  Effective Methods for the Computation of Bernstein-Sato polynomials for Hypersurfaces and Affine Varieties , 2010, 1002.3644.

[11]  A N Varčenko,et al.  ASYMPTOTIC HODGE STRUCTURE IN THE VANISHING COHOMOLOGY , 1982 .

[12]  Masaki Kashiwara,et al.  B-functions and holonomic systems , 1976 .

[13]  T. Torrelli Logarithmic comparison theorem and D-modules: an overview , 2005, math/0510430.

[14]  Toshinori Oaku,et al.  Algorithms for the b-function and D-modules associated with a polynomial , 1997 .

[15]  Viktor Levandovskyy,et al.  Plural: a computer algebra system for noncommutative polynomial algebras , 2003, ISSAC '03.

[16]  Viktor Levandovskyy,et al.  Algorithms for Checking Rational Roots of $b$-functions and their Applications , 2010, ArXiv.

[17]  S. C. Coutinho A primer of algebraic D-modules , 1995 .

[18]  Takafumi Shibuta,et al.  Algorithms for computing multiplier ideals , 2008, 0807.4302.

[19]  L. Narváez-Macarro Linearity conditions on the Jacobian ideal and logarithmic--meromorphic comparison for free divisors , 2008, 0804.2219.

[20]  Masayuki Noro,et al.  Stratification associated with local b-functions , 2010, J. Symb. Comput..

[21]  Viktor Levandovskyy,et al.  Exact linear modeling using Ore algebras , 2010, J. Symb. Comput..

[22]  G. Greuel,et al.  A Singular Introduction to Commutative Algebra , 2002 .

[23]  Michael Brickenstein,et al.  Slimgb: Gröbner bases with slim polynomials , 2010 .

[24]  Hiromasa Nakayama Algorithm computing the local b function by an approximate division algorithm in D , 2009, J. Symb. Comput..

[25]  Viktor Levandovskyy,et al.  On Preimages of Ideals in Certain Non–commutative Algebras , 2006 .

[26]  M. Saito,et al.  On microlocal b-function , 1994 .