暂无分享,去创建一个
[1] Toshinori Oaku,et al. Local Bernstein-Sato ideals: Algorithm and examples , 2010, J. Symb. Comput..
[2] Viktor Levandovskyy,et al. Computational D-module theory with singular, comparison with other systems and two new algorithms , 2008, ISSAC '08.
[3] Jean-Charles Faugère,et al. Efficient Computation of Zero-Dimensional Gröbner Bases by Change of Ordering , 1993, J. Symb. Comput..
[4] Viktor Levandovskyy,et al. Principal intersection and bernstein-sato polynomial of an affine variety , 2009, ISSAC '09.
[5] Hans Schönemann,et al. SINGULAR: a computer algebra system for polynomial computations , 2001, ACCA.
[6] Jesús Gago-Vargas,et al. Comparison of theoretical complexities of two methods for computing annihilating ideals of polynomials , 2005, J. Symb. Comput..
[7] Nero Budur,et al. Bernstein–Sato polynomials of arbitrary varieties , 2006, Compositio Mathematica.
[8] Mathias Schulze. A normal form algorithm for the Brieskorn lattice , 2004, J. Symb. Comput..
[9] Volker Weispfenning,et al. Non-Commutative Gröbner Bases in Algebras of Solvable Type , 1990, J. Symb. Comput..
[10] V. Levandovskyy,et al. Effective Methods for the Computation of Bernstein-Sato polynomials for Hypersurfaces and Affine Varieties , 2010, 1002.3644.
[11] A N Varčenko,et al. ASYMPTOTIC HODGE STRUCTURE IN THE VANISHING COHOMOLOGY , 1982 .
[12] Masaki Kashiwara,et al. B-functions and holonomic systems , 1976 .
[13] T. Torrelli. Logarithmic comparison theorem and D-modules: an overview , 2005, math/0510430.
[14] Toshinori Oaku,et al. Algorithms for the b-function and D-modules associated with a polynomial , 1997 .
[15] Viktor Levandovskyy,et al. Plural: a computer algebra system for noncommutative polynomial algebras , 2003, ISSAC '03.
[16] Viktor Levandovskyy,et al. Algorithms for Checking Rational Roots of $b$-functions and their Applications , 2010, ArXiv.
[17] S. C. Coutinho. A primer of algebraic D-modules , 1995 .
[18] Takafumi Shibuta,et al. Algorithms for computing multiplier ideals , 2008, 0807.4302.
[19] L. Narváez-Macarro. Linearity conditions on the Jacobian ideal and logarithmic--meromorphic comparison for free divisors , 2008, 0804.2219.
[20] Masayuki Noro,et al. Stratification associated with local b-functions , 2010, J. Symb. Comput..
[21] Viktor Levandovskyy,et al. Exact linear modeling using Ore algebras , 2010, J. Symb. Comput..
[22] G. Greuel,et al. A Singular Introduction to Commutative Algebra , 2002 .
[23] Michael Brickenstein,et al. Slimgb: Gröbner bases with slim polynomials , 2010 .
[24] Hiromasa Nakayama. Algorithm computing the local b function by an approximate division algorithm in D , 2009, J. Symb. Comput..
[25] Viktor Levandovskyy,et al. On Preimages of Ideals in Certain Non–commutative Algebras , 2006 .
[26] M. Saito,et al. On microlocal b-function , 1994 .