The Configuration Interaction Method: Advances in Highly Correlated Approaches

Abstract Highly correlated configuration interaction (CI) wavefunctions going beyond the simple singles and doubles (CISD) model space can provide very reliable potential energy surfaces, describe electronic excited states, and yield benchmark energies and molecular properties for use in calibrating more approximate methods. Unfortunately, such wavefunctions are also notoriously difficult to evaluate due to their extreme computational demands. The dimension of a full CI procedure, which represents the exact solution of the electronic Schrodinger equation for a fixed one-particle basis set, grows factorially with the number of electrons and basis functions. For very large configuration spaces, the number of CI coupling coefficients becomes prohibitively large to store on disk; these coefficients must be evaluated as needed in a so-called direct CI procedure. Work done by several groups since 1980 has focused on using Slater determinants rather than spin ( S ^ 2 ) eigenfunctions because coupling coefficients are easier to compute with the former. We review the fundamentals of the configuration interaction method and discuss various determinant-based CI algorithms. Additionally, we consider some applications of highly correlated CI methods.

[1]  Jeppe Olsen,et al.  Determinant based configuration interaction algorithms for complete and restricted configuration interaction spaces , 1988 .

[2]  Claus Ehrhardt,et al.  The coupled pair functional (CPF). A size consistent modification of the CI(SD) based on an energy functional , 1985 .

[3]  A. Mitrushenkov,et al.  Passing the several billion limit in FCI calculations on a mini-computer. A norm-consistent zero CI threshold estimate within the dynamic CI approach , 1995 .

[4]  H. Koch,et al.  Analytical calculation of full configuration interaction response properties: Application to Be , 1991 .

[5]  Stephen R. Langhoff,et al.  Full CI benchmark calculations on N2, NO, and O2: A comparison of methods for describing multiple bonds , 1987 .

[6]  Robert J. Harrison,et al.  Approximating full configuration interaction with selected configuration interaction and perturbation theory , 1991 .

[7]  Manabu Oumi,et al.  A doubles correction to electronic excited states from configuration interaction in the space of single substitutions , 1994 .

[8]  Stefano Evangelisti,et al.  Computation and analysis of the full configuration interaction wave function of some simple systems , 1993 .

[9]  P. Taylor,et al.  A full CI treatment of the 1A1-3B1 separation in methylene , 1986 .

[10]  Nicholas C. Handy,et al.  Multi-root configuration interaction calculations , 1980 .

[11]  D. Yarkony,et al.  Spin-forbidden decay of the dication HS2+ , 1991 .

[12]  K. Balasubramanian The low-lying states of the second-row transition metal hydrides (YH--CdH) , 1990 .

[13]  D. Yarkony,et al.  A theoretical treatment of thea 3Σ1+ →X1Σ0++ spin‐forbidden dipole‐allowed radiative transition in NO+ , 1991 .

[14]  J. V. Lenthe,et al.  Benchmark full configuration interaction calculations on the helium dimer , 1995 .

[15]  I. Shavitt,et al.  An application of perturbation theory ideas in configuration interaction calculations , 1968 .

[16]  Francesc Illas,et al.  Treating large intermediate spaces in the CIPSI method through a direct selected CI algorithm , 1992 .

[17]  H. Weyl The Classical Groups , 1940 .

[18]  C. Bauschlicher,et al.  Accurate ab initio calculations for the ground states of N2, O2 and F2 , 1987 .

[19]  Peter R. Taylor,et al.  Accurate quantum chemical calculations , 2007 .

[20]  Peter J. Knowles,et al.  On the convergence of the Møller-Plesset perturbation series , 1985 .

[21]  A. Szabó,et al.  Modern quantum chemistry : introduction to advanced electronic structure theory , 1982 .

[22]  H. Schaefer,et al.  Natural orbitals from single and double excitation configuration interaction wave functions: their use in second‐order configuration interaction and wave functions incorporating limited triple and quadruple excitations , 1992 .

[23]  Ernest R. Davidson,et al.  Size consistency in the dilute helium gas electronic structure , 1977 .

[24]  Per-Åke Malmqvist,et al.  Calculation of transition density matrices by nonunitary orbital transformations , 1986 .

[25]  James C. Greer,et al.  Estimating full configuration interaction limits from a Monte Carlo selection of the expansion space , 1995 .

[26]  C. Bauschlicher,et al.  Computation of electronic transition moments: the length versus the velocity representation , 1991 .

[27]  Robert J. Buenker,et al.  Energy extrapolation in CI calculations , 1975 .

[28]  K. Balasubramanian,et al.  Germanium monochloride (GeCl). Spectroscopic constants and potential energy curves , 1993 .

[29]  Jeppe Olsen,et al.  On the inherent divergence in the Møller-Plesset series. The neon atom — a test case , 1996 .

[30]  Henry F. Schaefer,et al.  X- {sup 3}B{sub 1}, a- {sup 1}A{sub 1}, b- {sup 1}B{sub 1}, and c- {sup 1}A{sub 1} electronic states of CH{sub 2} , 1996 .

[31]  H. Schaefer,et al.  The vibrational frequencies of borane (BH3) : a comparison of high level theoretical results , 1993 .

[32]  M. Gould,et al.  Spin‐dependent unitary group approach. II. Derivation of matrix elements for spin‐dependent operators , 1993 .

[33]  Wlodzislaw Duch,et al.  On multireference superdirect configuration interaction in third order , 1994 .

[34]  George Pâolya,et al.  Applied Combinatorial Mathematics , 1964 .

[35]  Péter G. Szalay,et al.  New Versions of Approximately Extensive Corrected Multireference Configuration Interaction Methods , 1996 .

[36]  E. Hylleraas,et al.  Neue Berechnung der Energie des Heliums im Grundzustande, sowie des tiefsten Terms von Ortho-Helium , 1929 .

[37]  R. Bartlett,et al.  The full CCSDT model for molecular electronic structure , 1987 .

[38]  Wlodzislaw Duch The superdirect configuration interaction method , 1989 .

[39]  Włodzisław Duch,et al.  A multireference direct CI program based on the symmetric group graphical approach , 1987 .

[40]  G. Scuseria,et al.  Variational studies of the importance of triple and quadruple excitations on the barrier height for F+H2→FH+H , 1988 .

[41]  D. Yarkony,et al.  On the radiative lifetime of the (a 4Σ−,v,N,Fi) levels of the CH radical: An ab initio treatment , 1994 .

[42]  K. Balasubramanian,et al.  Electronic states, ionization potentials, and bond energies of TlHn, InHn, TlH+n, and InH+n (n=1–3) , 1991 .

[43]  F. B. Brown,et al.  Multireference configuration interaction treatment of potential energy surfaces: symmetric dissociation of H2O in a double-zeta basis , 1984 .

[44]  Peter J. Knowles,et al.  Very large full configuration interaction calculations , 1989 .

[45]  Ria Broer,et al.  Broken orbital symmetry and the description of valence hole states in the tetrahedral [CrO4]2− anion , 1988 .

[46]  G. Scuseria,et al.  An assessment for the full coupled cluster method including all single, double, and triple excitations: The diatomic molecules LiH, Li2, BH, LiF, C2, BeO, CN+, BF, NO+, and F2 , 1990 .

[47]  R. Bartlett,et al.  Fifth‐order many‐body perturbation theory for molecular correlation energies , 1989 .

[48]  C. Bauschlicher Full configuration interaction benchmark calculations for titanium monohydride , 1988 .

[49]  D. Woon Benchmark calculations with correlated molecular wave functions. V. The determination of accurate abinitio intermolecular potentials for He2, Ne2, and Ar2 , 1994 .

[50]  C. Bauschlicher,et al.  A full CI treatment of the 1A1,1B1, and 3B1 states of SiH2 , 1987 .

[51]  E. Davidson,et al.  Improved Algorithms for the Lowest Few Eigenvalues and Associated Eigenvectors of Large Matrices , 1992 .

[52]  Peter J. Knowles,et al.  Unlimited full configuration interaction calculations , 1989 .

[53]  E. Davidson The iterative calculation of a few of the lowest eigenvalues and corresponding eigenvectors of large real-symmetric matrices , 1975 .

[54]  R. Bartlett,et al.  A coupled cluster approach with triple excitations , 1984 .

[55]  C. Bauschlicher,et al.  Benchmark full configuration-interaction calculations on HF and NH2 , 1986 .

[56]  J. Rychlewski,et al.  Many‐electron explicitly correlated Gaussian functions. II. Ground state of the helium molecular ion He+2 , 1995 .

[57]  H. Schaefer,et al.  The diagonal correction to the Born–Oppenheimer approximation: Its effect on the singlet–triplet splitting of CH2 and other molecular effects , 1986 .

[58]  Jeppe Olsen,et al.  Excitation energies, transition moments and dynamic polarizabilities for CH+. A comparison of multiconfigurational linear response and full configuration interaction calculations , 1989 .

[59]  H. Schaefer,et al.  The H+5 potential energy hypersurface: Characterization of ten distinct energetically low‐lying stationary points , 1987 .

[60]  Gustavo E. Scuseria,et al.  The open-shell restricted Hartree—Fock singles and doubles coupled-cluster method including triple excitations CCSD (T): application to C+3 , 1991 .

[61]  Thom H. Dunning,et al.  Gaussian basis sets for use in correlated molecular calculations. V. Core-valence basis sets for boron through neon , 1995 .

[62]  Towards a configuration interaction method with flexible spaces , 1990 .

[63]  T. Crawford,et al.  The balance between theoretical method and basis set quality: A systematic study of equilibrium geometries, dipole moments, harmonic vibrational frequencies, and infrared intensities , 1993 .

[64]  M. Hernandez,et al.  A semi‐empirical MO theory for ionization potentials and electron affinities , 1977 .

[65]  H. Schaefer,et al.  The effects of triple and quadruple excitations in configuration interaction procedures for the quantum mechanical prediction of molecular properties , 1988 .

[66]  K. Balasubramanian Energy separations for the electronic states of PH−2,PH2 and PH+2 , 1993 .

[67]  Passing the one-quadrillion limit in FCl extrapolations on a personal computer , 1996 .

[68]  Robert J. Buenker,et al.  Individualized configuration selection in CI calculations with subsequent energy extrapolation , 1974 .

[69]  Holger Dachsel,et al.  An efficient data compression method for the Davidson subspace diagonalization scheme , 1995 .

[70]  S. Langhoff,et al.  On the 1A1–3B1 separation in CH2 and SiH2 , 1987 .

[71]  Ron Shepard,et al.  A data compression method applicable to first‐order convergent iterative procedures , 1990 .

[72]  O. Parisel,et al.  Second-order perturbation theory using correlated orbitals. I. Full-valence reference functions , 1994 .

[73]  John F. Stanton,et al.  The equation of motion coupled‐cluster method. A systematic biorthogonal approach to molecular excitation energies, transition probabilities, and excited state properties , 1993 .

[74]  Rodney J. Bartlett,et al.  Approximately extensive modifications of the multireference configuration interaction method: A theoretical and practical analysis , 1995 .

[75]  Peter J. Knowles,et al.  A new determinant-based full configuration interaction method , 1984 .

[76]  A wavefunction operator approach to the full-CI problem , 1992 .

[77]  C. Sherrill Full configuration interaction benchmarks for the X̃ 3B1, ã 1A1, b̃ 1B1 and c̃ 1A1 states of methylene , 1997 .

[78]  M. Page,et al.  Multireference CI Gradients and MCSCF Second Derivatives. , 1984 .

[79]  J. Paldus,et al.  Unitary group approach to spin‐adapted open‐shell coupled cluster theory , 1995 .

[80]  Peter Pulay,et al.  The local correlation treatment. II. Implementation and tests , 1988 .

[81]  J. Olsen,et al.  Accurate calculations of the dynamic dipole polarizability of N2. A multiconfigurational linear response study using restricted active space (RAS) wavefunctions , 1989 .

[82]  W. Kutzelnigg Pair Correlation Theories , 1977 .

[83]  Leszek Meissner,et al.  Size-consistency corrections for configuration interaction calculations , 1988 .

[84]  Erwin Schrödinger,et al.  Über das Verhältnis der Heisenberg‐Born‐Jordanschen Quantenmechanik zu der meinem , 1926 .

[85]  R. Mcweeny,et al.  Methods Of Molecular Quantum Mechanics , 1969 .

[86]  J. Olsen,et al.  Spin–orbit coupling constants in a multiconfiguration linear response approach , 1992 .

[87]  H. Nakatsuji,et al.  Symmetry‐adapted cluster–configuration interaction method applied to high‐spin multiplicity , 1993 .

[88]  J. P. Malrieu,et al.  Iterative perturbation calculations of ground and excited state energies from multiconfigurational zeroth‐order wavefunctions , 1973 .

[89]  Per E. M. Siegbahn,et al.  Generalizations of the direct CI method based on the graphical unitary group approach. II. Single and double replacements from any set of reference configurations , 1980 .

[90]  A. D. McLean,et al.  An abinitio calculation of ν1 and ν3 for triplet methylene (X̃ 3B1 CH2) and the determination of the vibrationless singlet–triplet splitting Te(ã 1A1) , 1987 .

[91]  Rodney J. Bartlett,et al.  Erratum: The full CCSDT model for molecular electronic structure [J. Chem. Phys. 86, 7041 (1987)] , 1988 .

[92]  S. Peyerimhoff,et al.  Combined SCF and CI Method for the Calculation of Electronically Excited States of Molecules: Potential Curves for the Low‐Lying States of Formaldehyde , 1970 .

[93]  K. Balasubramanian CAS SCF/CI calculations of low-lying states of SnH2 , 1986 .

[94]  B. Roos The Multiconfigurational (MC) Self-Consistent Field (SCF) Theory , 1992 .

[95]  S. Langhoff,et al.  The 2D Rydberg series in Al I , 1988 .

[96]  Gg Balint-Kurti,et al.  Lecture notes in Chemistry , 2000 .

[97]  A. D. McLean,et al.  On the dissociation energy of Mg2 , 1990 .

[98]  C. W. Bauschlicher On the 3d 64s2 (5D)−3d 74s1 (5F) separation in Fe , 1987 .

[99]  R. P. Hosteny,et al.  Ab initio study of the π‐electron states of trans‐butadiene , 1975 .

[100]  J. Olsen,et al.  Core—valence correlation effects on the ground state electron affinity of calcium , 1994 .

[101]  C. Ribbing,et al.  Spin–orbit coupled excited states in transition metal complexes: A configuration interaction treatment of HCo(CO)4 , 1994 .

[102]  M. Head‐Gordon,et al.  On the Nature of Electronic Transitions in Radicals: An Extended Single Excitation Configuration Interaction Method , 1996 .

[103]  Peter Pulay,et al.  Local configuration interaction: An efficient approach for larger molecules , 1985 .

[104]  M. Blomberg,et al.  A systematic approach to transition moment calculations , 1988 .

[105]  Bernard Pullman,et al.  The World of Quantum Chemistry , 1974 .

[106]  C. Bauschlicher,et al.  Full CI benchmark calculations for several states of the same symmetry , 1987 .

[107]  M. Urban,et al.  Dimers of rare gas atoms: CCSD(T), CCSDT and FCI calculations on the (He)2 dimer, CCSD(T) and CCSDT calculations on the (Ne)2 dimer, and CCSD(T) all-electron and pseudopotential calculations on the dimers from (Ne)2 through (Xe)2 , 1996 .

[108]  Stefano Evangelisti,et al.  Convergence of an improved CIPSI algorithm , 1983 .

[109]  Alistair P. Rendell,et al.  The restricted active space self-consistent-field method, implemented with a split graph unitary group approach , 1990 .

[110]  B. Roos,et al.  A new method for large-scale Cl calculations , 1972 .

[111]  C. Bauschlicher,et al.  Full CI studies of the collinear transition state for the reaction F+H2→HF+H , 1987 .

[112]  John D. Watts,et al.  The unitary coupled-cluster approach and molecular properties. Applications of the UCC(4) method , 1989 .

[113]  Michael J. Frisch,et al.  Toward a systematic molecular orbital theory for excited states , 1992 .

[114]  The efficient treatment of higher excitations in CI calculations: A comparison of exact and approximate results , 1994 .

[115]  Per-Åke Malmqvist Mathematical Tools in Quantum Chemistry , 1992 .

[116]  P. Taylor,et al.  Ab initio CI treatment of the termolecular reaction of 3H2: hexagonal H6 , 1989 .

[117]  H. Schaefer,et al.  A systematic theoretical study of the harmonic vibrational frequencies for polyatomic molecules: The single, double, and perturbative triple excitation coupled‐cluster [CCSD(T)] method , 1993 .

[118]  I. Csizmadia,et al.  The use of average natural orbitals for configuration interaction calculations on the Boron Hydride molecule , 1973 .

[119]  J. Karwowski The Configuration Interaction Approach to Electron Correlation , 1992 .

[120]  Ron Shepard,et al.  The Analytic Gradient Method for Configuration Interaction Wave Functions , 1995 .

[121]  G. Scuseria,et al.  A coupled‐cluster study of the electron affinity of the oxygen atom , 1992 .

[122]  A. D. McLean,et al.  The binding energy of the ground state of Be2 , 1983 .

[123]  Àngels Povill,et al.  An efficient improvement of the string-based direct selected CI algorithm , 1995 .

[124]  H. Schaefer,et al.  Methylene singlet-triplet separation. An explicit variational treatment of many-body correlation effects , 1981 .

[125]  P. Claverie,et al.  Fully localized bond orbitals and the correlation problem , 1968 .

[126]  Alistair P. Rendell,et al.  Triple and quadruple excitation contributions to the binding in Be clusters: Calibration calculations on Be3 , 1990 .

[127]  R. Bartlett,et al.  The coupled‐cluster single, double, and triple excitation model for open‐shell single reference functions , 1990 .

[128]  P. Jensen,et al.  The potential surface and stretching frequencies of X̃ 3B1 methylene (CH2) determined from experiment using the Morse oscillator‐rigid bender internal dynamics Hamiltonian , 1988 .

[129]  Jeppe Olsen,et al.  Excitation energies of BH, CH2 and Ne in full configuration interaction and the hierarchy CCS, CC2, CCSD and CC3 of coupled cluster models , 1995 .

[130]  John C. Slater,et al.  Molecular Energy Levels and Valence Bonds , 1931 .

[131]  M. Gould,et al.  A unitary group formulation of the complete active space configuration interaction method. II. An approach based on the subgroup chain U(n=n0+n1+n2) = U(n0)×U(n1 +in2) = U(n0)×U(n1)×U(n2) , 1992 .

[132]  SINGLE REFERENCE COUPLED CLUSTER AND PERTURBATION THEORIES OF ELECTRONIC EXCITATION ENERGIES , 1997 .

[133]  Ernest R. Davidson,et al.  CONFIGURATION INTERACTION DESCRIPTION OF ELECTRON CORRELATION , 1974 .

[134]  E. Hylleraas,et al.  Numerische Berechnung der 2S-Terme von Ortho- und Par-Helium , 1930 .

[135]  M. Head‐Gordon,et al.  Configuration interaction with single substitutions for excited states of open-shell molecules , 1995 .

[136]  Peter R. Taylor,et al.  A full CI treatment of Ne atom - a benchmark calculation performed on the NAS CRAY 2 , 1986 .

[137]  Jeppe Olsen,et al.  Surprising cases of divergent behavior in Mo/ller–Plesset perturbation theory , 1996 .

[138]  Jean-Paul Malrieu,et al.  Direct selected configuration interaction using a hole-particle formalism , 1992 .

[139]  G. Shortley,et al.  The Theory of Complex Spectra , 1930 .

[140]  H. Schaefer Methods of Electronic Structure Theory , 1977 .

[141]  S. F. Boys Localized Orbitals and Localized Adjustment Functions , 1966 .

[142]  J. Malrieu The PCILO Method , 1977 .

[143]  Stanisl,et al.  Many‐body perturbation theory of electrostatic interactions between molecules: Comparison with full configuration interaction for four‐electron dimers , 1993 .

[144]  Henry F. Schaefer,et al.  The X̃ 3B1, ã 1A1, b̃ 1B1, and c̃ 1A1 Electronic States of CH2 , 1996 .

[145]  Björn O. Roos,et al.  The Multiconfigurational (MC) SCF Method , 1983 .

[146]  E. Brändas,et al.  Dispersion forces, second- and third-order energies☆ , 1968 .

[147]  Rodney J. Bartlett,et al.  Full configuration-interaction and state of the art correlation calculations on water in a valence double-zeta basis with polarization functions , 1996 .

[148]  J. Olsen,et al.  Excitation energies of H2O, N2 and C2 in full configuration interaction and coupled cluster theory , 1996 .

[149]  R. Bartlett,et al.  A full coupled‐cluster singles and doubles model: The inclusion of disconnected triples , 1982 .

[150]  J. MacDonald,et al.  Successive Approximations by the Rayleigh-Ritz Variation Method , 1933 .

[151]  Robert J. Gdanitz,et al.  The averaged coupled-pair functional (ACPF): A size-extensive modification of MR CI(SD) , 1988 .

[152]  W. D. Allen,et al.  The analytic evaluation of energy first derivatives for two‐configuration self‐consistent‐field configuration interaction (TCSCF‐CI) wave functions. Application to ozone and ethylene , 1987 .

[153]  N. Flocke Symmetric group approach to relativistic CI. IV. Representations of one‐electron spin operators and their products in a symmetric group‐adapted basis of N‐electron spin functions , 1997 .

[154]  Analytic energy derivative methods for excited singlet states of the same symmetry as the electronic ground state , 1985 .

[155]  Björn O. Roos,et al.  Second-order perturbation theory with a complete active space self-consistent field reference function , 1992 .

[156]  C. Bauschlicher,et al.  The computed spectrum of AlC , 1988 .

[157]  W. Goddard,et al.  Excited States of H2O using improved virtual orbitals , 1969 .

[158]  S. Xantheas,et al.  Exploiting regularity in systematic sequences of wavefunctions which approach the full CI limit , 1992 .

[159]  C. Bauschlicher,et al.  Full CI benchmark calculations on CH3 , 1987 .

[160]  K. Balasubramanian,et al.  Electronic states of WH , 1991 .

[161]  G. Diercksen,et al.  Methods in Computational Molecular Physics , 1983 .

[162]  J. Wasilewski Graphical techniques in the configuration interaction approach based on pure slater determinants , 1989 .

[163]  T. Crawford,et al.  Benchmark studies of electron correlation in six-electron systems , 1994 .

[164]  S. Langhoff,et al.  Full configuration interaction benchmark calculations for transition moments , 1988 .

[165]  K. Szalewicz,et al.  Many‐body theory of exchange effects in intermolecular interactions. Second‐quantization approach and comparison with full configuration interaction results , 1994 .

[166]  K. Balasubramanian,et al.  Potential energy surfaces for insertion of hafnium atoms into hydrogen , 1991 .

[167]  B k approximation applied to CI-SDTQ , 1996 .

[168]  Wilfried Meyer,et al.  Configuration Expansion by Means of Pseudonatural Orbitals , 1977 .

[169]  E. Davidson,et al.  Relativistic corrections for methylene , 1980 .

[170]  F. Illas,et al.  On the performance of atomic natural orbital basis sets: A full configuration interaction study , 1990 .

[171]  Peter J. Knowles,et al.  A determinant based full configuration interaction program , 1989 .

[172]  K. Nishimoto,et al.  Theoretical study on the reaction mechanism of excited-state 1,3 hydrogen transfer in formamide , 1988 .

[173]  John C. Slater,et al.  The Theory of Complex Spectra , 1929 .

[174]  John F. Stanton,et al.  A comparison of single reference methods for characterizing stationary points of excited state potential energy surfaces , 1995 .

[175]  Ruben Pauncz,et al.  Spin Eigenfunctions: Construction and Use , 1979 .

[176]  K. Balasubramanian Spectroscopic constants and potential energy curves of gallium molecules (Ga2, Ga2-, and Ga2+) , 1990 .

[177]  Stefano Evangelisti,et al.  A vector and parallel full configuration interaction algorithm , 1993 .

[178]  J. Almlöf,et al.  Exploiting non-abelian point group symmetry in direct two-electron integral transformations , 1991 .

[179]  K. Balasubramanian Spectroscopic constants and potential energy curves of 47 electronic states of InSb, InSb+, and InSb− , 1990 .

[180]  M. Gould,et al.  Spin‐dependent unitary group approach to the Pauli–Breit Hamiltonian. II. First order energy level shifts due to spin–spin interaction , 1993 .

[181]  B. Roos,et al.  A complete active space SCF method (CASSCF) using a density matrix formulated super-CI approach , 1980 .

[182]  Per E. M. Siegbahn,et al.  Generalizations of the direct CI method based on the graphical unitary group approach. I. Single replacements from a complete CI root function of any spin, first order wave functions , 1979 .

[183]  P. Knowles,et al.  An efficient internally contracted multiconfiguration–reference configuration interaction method , 1988 .

[184]  S. Wilson Four-Index Transformations , 1987 .

[185]  D. Yarkony,et al.  On the electronic structure of the 2 1A1 state of methylene , 1978 .

[186]  J. Malrieu,et al.  The full-CI energy of the NH3 molecule in a DZP basis set , 1994 .

[187]  A. D. McLean,et al.  Classification of configurations and the determination of interacting and noninteracting spaces in configuration interaction , 1973 .

[188]  Per E. M. Siegbahn,et al.  A new direct CI method for large CI expansions in a small orbital space , 1984 .

[189]  K. Balasubramanian Relativistic configuration interaction calculations for polyatomics: Applications to PbH2, SnH2, and GeH2 , 1988 .

[190]  Nicholas C. Handy,et al.  Exact solution (within a double-zeta basis set) of the schrodinger electronic equation for water , 1981 .

[191]  S. Langhoff,et al.  Theoretical D0 for NH(X 3Σ , 1987 .

[192]  C. Bauschlicher,et al.  Full CI benchmark calculations for molecular properties , 1987 .

[193]  Charles W. Bauschlicher,et al.  Theoretical study of the A’ 5Σ+g and C‘ 5Πu states of N2: Implications for the N2 afterglow , 1988 .

[194]  K. Balasubramanian,et al.  Potential energy surfaces for YH+2 and ZrH+2 , 1989 .

[195]  A. Mitrushenkov Passing the several billions limit in FCI calculations on a mini-computer , 1994 .

[196]  T. Martínez,et al.  LOCAL WEAK PAIRS SPECTRAL AND PSEUDOSPECTRAL SINGLES AND DOUBLES CONFIGURATION INTERACTION , 1996 .

[197]  S. Rettrup,et al.  A new symmetric group program for direct configuration interaction studies of molecules , 1987 .

[198]  Isaiah Shavitt,et al.  The Method of Configuration Interaction , 1977 .

[199]  Henry F. Schaefer,et al.  Electronic Splitting between the 2B1 and 2A1 States of the NH2 Radical , 1971 .

[200]  Wolfram Koch,et al.  Theoretical investigations of small multiply charged cations. III. NeN2 , 1986 .

[201]  Robert J. Harrison,et al.  A parallel implementation of the COLUMBUS multireference configuration interaction program , 1993 .

[202]  Graphical unitary group approach to spin–spin interaction , 1992 .

[203]  Josef Paldus,et al.  Group theoretical approach to the configuration interaction and perturbation theory calculations for atomic and molecular systems , 1974 .

[204]  P. Löwdin Quantum Theory of Many-Particle Systems. I. Physical Interpretations by Means of Density Matrices, Natural Spin-Orbitals, and Convergence Problems in the Method of Configurational Interaction , 1955 .

[205]  N. Handy,et al.  Full CI calculations on BH, H2O, NH3, and HF , 1983 .

[206]  W. D. Allen,et al.  An examination of the 2 1A1 states of formaldehyde and ketene including analytic configuration interaction energy first derivatives for singlet excited electronic states of the same symmetry as the ground state , 1987 .

[207]  C. Bauschlicher,et al.  On the dissociation energy of BH , 1990 .

[208]  Hans-Joachim Werner,et al.  The self‐consistent electron pairs method for multiconfiguration reference state functions , 1982 .

[209]  Robert J. Harrison,et al.  An efficient implementation of the full-CI method using an (n–2)-electron projection space , 1989 .

[210]  E. Davidson,et al.  An approximation to frozen natural orbitals through the use of the Hartree–Fock exchange potential , 1981 .

[211]  G. Scuseria,et al.  Comparison of coupled-cluster methods which include the effects of connected triple excitations , 1990 .

[212]  M. Zerner,et al.  An examination of perturbation–variational theory and scaling at fifth order , 1988 .

[213]  Y. Yamaguchi,et al.  A New Dimension to Quantum Chemistry: Analytic Derivative Methods in AB Initio Molecular Electronic Structure Theory , 1994 .

[214]  P. Piecuch,et al.  A study of 1A1-3B1 separation in CH2 using orthogonally spin-adapted state-universal and state-specific coupled-cluster methods , 1994 .

[215]  J. Malrieu,et al.  Size-consistent selected configuration interaction calculations. A few tests of efficiency , 1993 .

[216]  H.J.J. Van Dam,et al.  An improvement of Davidson's iteration method: Applications to MRCI and MRCEPA calculations , 1996 .

[217]  Wlodzislaw Duch,et al.  Size‐extensivity corrections in configuration interaction methods , 1994 .

[218]  J. Malrieu,et al.  Multireference self‐consistent size‐consistent singles and doubles configuration interaction for ground and excited states , 1994 .

[219]  Approximate full configuration interaction calculations of total energies, harmonic vibrational frequencies and equilibrium bond distances on F2, BF, C2, CN+ and NO+ molecules in a DZ + P basis set , 1996 .

[220]  K. Balasubramanian Geometries and bond energies of GaHn and GaHn+ (n=1–3) , 1989 .

[221]  Emily A. Carter,et al.  Pseudospectral full configuration interaction , 1992 .

[222]  W. Goddard,et al.  The Self-Consistent Field Equations for Generalized Valence Bond and Open-Shell Hartree—Fock Wave Functions , 1977 .

[223]  J. Paldus,et al.  Unitary group based state specific open-shell-singlet coupled-cluster method: Application to ozone and comparison with Hilbert and Fock space theories , 1995 .

[224]  J. M. Bofill,et al.  A geometry optimization benchmark using highly correlated wavefunctions (FCI and MRD-CI) , 1995 .

[225]  Joseph G. Hoffman,et al.  Quantum Theory of Atoms, Molecules and the Solid State: A Tribute to John C. Slater , 1967 .

[226]  W. Kutzelnigg,et al.  CID and CEPA calculations with linear r12 terms , 1991 .

[227]  P. Taylor,et al.  Accurate quantum‐chemical calculations: The use of Gaussian‐type geminal functions in the treatment of electron correlation , 1996 .

[228]  W. C. Ermler,et al.  Spin-orbit configuration-interaction study of valence and Rydberg states of LiBe , 1992 .

[229]  Per E. M. Siegbahn,et al.  The Configuration Interaction Method , 1992 .

[230]  S. Langhoff,et al.  An initio calculations on C2, Si2, and SiC , 1987 .

[231]  Henry F. Schaefer,et al.  The shape‐driven graphical unitary group approach to the electron correlation problem. Application to the ethylene molecule , 1982 .

[232]  C. E. Dykstra,et al.  An electron pair operator approach to coupled cluster wave functions. Application to He2, Be2, and Mg2 and comparison with CEPA methods , 1981 .

[233]  Martin Head-Gordon,et al.  Quadratic configuration interaction. A general technique for determining electron correlation energies , 1987 .

[234]  J. Olsen The Method of Second Quantization , 1992 .

[235]  G. D. Purvis,et al.  Comparison of MBPT and coupled-cluster methods with full CI. Importance of triplet excitation and infinite summations☆ , 1983 .

[236]  S. Langhoff,et al.  Core–core and core–valence correlation , 1988 .

[237]  Robert J. Buenker,et al.  A new table-direct configuration interaction method for the evaluation of Hamiltonian matrix elements in a basis of linear combinations of spin-adapted functions , 1995 .

[238]  Francesc Illas,et al.  Selected versus complete configuration interaction expansions , 1991 .

[239]  Robert J. Harrison,et al.  A massively parallel multireference configuration interaction program: The parallel COLUMBUS program , 1997 .

[240]  Włodzisław Duch,et al.  Calculation of the one-electron coupling coefficients in the configuration interaction method , 1986 .

[241]  A. Mitrushenkov Second‐order Epstein–Nesbet correction to ‘‘dynamic’’ configuration interaction energies , 1996 .

[242]  R. Bartlett,et al.  Erratum: A coupled cluster approach with triple excitations [J. Chem. Phys. 81, 5906 (1984)] , 1985 .

[243]  J. M. Bofill,et al.  Some remarks on the use of the three-term recurrence method in the configuration interaction eigenvalue problem , 1994 .

[244]  E. Hylleraas The Schrödinger Two-Electron Atomic Problem , 1964 .

[245]  Charles W. Bauschlicher,et al.  The construction of modified virtual orbitals (MVO’s) which are suited for configuration interaction calculations , 1980 .

[246]  Björn O. Roos,et al.  The CASSCF state interaction method , 1989 .

[247]  Per E. M. Siegbahn,et al.  Direct configuration interaction with a reference state composed of many reference configurations , 1980 .

[248]  Ernest R. Davidson,et al.  Configuration interaction calculations on the nitrogen molecule , 1974 .

[249]  J. H. van Lenthe,et al.  A space‐saving modification of Davidson's eigenvector algorithm , 1990 .

[250]  Roberto Ansaloni,et al.  A full CI algorithm on the CRAY T3D. Application to the NH3 molecule , 1995 .

[251]  Robert J. Buenker,et al.  The ground state of the CN+ ion: a multi-reference Ci study , 1980 .

[252]  V. Bondybey Electronic structure and bonding of Be2 , 1984 .

[253]  Linus Pauling,et al.  Introduction to Quantum Mechanics with Applications to Chemistry , 1935 .

[254]  Włodzisław Duch,et al.  Symmetric group approach to configuration interaction methods , 1985 .

[255]  K. Balasubramanian,et al.  Geometries and energies of GeHn and GeH+n (n=1–4) , 1990 .

[256]  J. Olsen,et al.  Restricted and complete-active-space multiconfiguration linear response calculations of the polarizability of formamide and urea , 1991 .

[257]  Włodzisław Duch,et al.  GRMS or Graphical Representation of Model Spaces , 1986 .

[258]  A. Bunge,et al.  Electronic Wavefunctions for Atoms. III. Partition of Degenerate Spaces and Ground State of C , 1970 .

[259]  F. Illas,et al.  Differential correlation effects in chemisorption cluster model calculations: an FCI study , 1991 .

[260]  P. Siegbahn The Direct CI Method , 1983 .

[261]  M. Head‐Gordon,et al.  A fifth-order perturbation comparison of electron correlation theories , 1989 .

[262]  Robert J. Buenker,et al.  Nonorthonormal CI for molecular excited states. I. The sudden polarization effect in 90° twisted ethylene , 1984 .

[263]  Henry F. Schaefer,et al.  Compact Variational Wave Functions Incorporating Limited Triple and Quadruple Substitutions , 1996 .

[264]  T. Martínez,et al.  Pseudospectral multireference single and double excitation configuration interaction , 1995 .

[265]  R. Bartlett,et al.  On the singlet–triplet separation in methylene: A critical comparison of single‐ versus two‐determinant (generalized valence bond) coupled cluster theory , 1995 .

[266]  Josef Paldus,et al.  Vectorizable approach to molecular CI problems using determinantal basis , 1989 .

[267]  P. Knowles,et al.  An efficient method for the evaluation of coupling coefficients in configuration interaction calculations , 1988 .

[268]  Jeppe Olsen,et al.  Finite element multiconfiguration Hartree-Fock determination of the atomic quadrupole moment of Ca(3d4s; 1D) , 1992 .

[269]  B. Brooks,et al.  The graphical unitary group approach to the electron correlation problem. Methods and preliminary applications , 1979 .

[270]  Rodney J. Bartlett,et al.  A multi-reference coupled-cluster method for molecular applications , 1984 .

[271]  K. Balasubramanian The singlet–triplet splittings in AsH+2, SbH+2, and BiH+2 and bond energies and ionization potentials of AsH2 , 1989 .

[272]  Wlodzislaw Duch Configuration interaction method: the past and future perspectives , 1991 .

[273]  Hiroshi Nakatsuji,et al.  Cluster expansion of the wavefunction. Calculation of electron correlations in ground and excited states by SAC and SAC CI theories , 1979 .

[274]  Roberto Ansaloni,et al.  A one billion determinant full CI benchmark on the Cray T3D , 1996 .

[275]  Kerstin Andersson,et al.  Multiconfigurational second-order perturbation theory , 1995 .

[276]  Hiroshi Nakatsuji,et al.  Cluster expansion of the wavefunction. Electron correlations in ground and excited states by SAC (symmetry-adapted-cluster) and SAC CI theories , 1979 .

[277]  J. Olsen,et al.  Passing the one-billion limit in full configuration-interaction (FCI) calculations , 1990 .

[278]  P. Burton,et al.  Full Cl extrapolation compared to explicit full Cl for H2O in a double-zeta basis , 1983 .