Evanescent light-wave atom mirrors, resonators, waveguides, and traps

Publisher Summary This chapter presents an overview of atom mirrors, resonators, waveguides, and traps that operate for the most part on the evanescent light-wave mechanism for atom manipulation. For many years, it has been known that light can be used to trap and manipulate small dielectric particles and atoms. In particular, the intense coherent light of lasers has been used to cool neutral atoms down to the micro-Kelvin and now even the nano-Kelvin regimes. The chapter discusses several convex, evanescent light-wave traps or guides in which at least one field is red-detuned, and hence attractive but a centrifugal force or a blue-detuned field provides a repulsive counterforce to allow the atoms to remain confined in stable orbits around the convex, dielectric, and optical resonator. The chapter focuses on the use of the evanescent field for making atom mirrors, resonators, waveguides, and traps. One of the principal experimental drawbacks of the evanescent light-wave mirror is that it requires quite high laser power to produce a sufficiently large potential barrier to reflect atoms with any realistic component of velocity normal to the surface, while not introducing an unacceptable degree of spontaneous emission probability.

[1]  A. Einstein Zur Quantentheorie der Strahlung , 1916 .

[2]  Glasgow,et al.  Theory of an atomic beam splitter based on velocity-tuned resonances. , 1991, Physical review. A, Atomic, molecular, and optical physics.

[3]  Walls,et al.  Quantum superpositions of atomic de Broglie waves by an atomic mirror. , 1992, Physical Review Letters.

[4]  Takuma,et al.  Imaging and focusing of atoms by a fresnel zone plate. , 1991, Physical review letters.

[5]  Ito,et al.  Laser spectroscopy of atoms guided by evanescent waves in micron-sized hollow optical fibers. , 1996, Physical review letters.

[6]  W. Pauli The Connection Between Spin and Statistics , 1940 .

[7]  A. Hemmerich,et al.  Surface-plasmon mirror for atoms. , 1993, Optics letters.

[8]  Fisk,et al.  Observation of velocity-tuned resonances in the reflection of atoms from an evanescent light grating. , 1994, Physical review. A, Atomic, molecular, and optical physics.

[9]  Scully,et al.  Quantum-noise limits to matter-wave interferometry. , 1993, Physical review. A, Atomic, molecular, and optical physics.

[10]  P. Goodman,et al.  Calculation of back-reflected intensities of a Na-atom beam by a standing evanescent E-M field , 1993 .

[11]  J. Söding,et al.  Gravitational laser trap for atoms with evanescent-wave cooling. , 1995 .

[12]  R. Feynman Quantum mechanical computers , 1986 .

[13]  H. Mabuchi,et al.  Atom galleries for whispering atoms: binding atoms in stable orbits around an optical resonator. , 1994, Optics letters.

[14]  A. Sidorov,et al.  Proposal for a new transmission-reflection beam splitter for multi-level atoms☆ , 1995 .

[15]  V. Balykin On the possibility of velocity monochromatization of atomic beams below recoil velocity , 1989 .

[16]  Keith,et al.  An interferometer for atoms. , 1991, Physical review letters.

[17]  J. Hajnal,et al.  Diffraction of atoms by a standing evanescent light wave — A reflection grating for atoms , 1989 .

[18]  Motoichi Ohtsu,et al.  Optical potential for atom guidance in a cylindrical-core hollow fiber , 1995 .

[19]  R. Iengo,et al.  Anyon quantum mechanics and Chern-Simons theory , 1992 .

[20]  Strong coupling cavity physics in microspheres with whispering gallery modes , 1995 .

[21]  S Kawata,et al.  Movement of micrometer-sized particles in the evanescent field of a laser beam. , 1992, Optics letters.

[22]  Barenco,et al.  Elementary gates for quantum computation. , 1995, Physical review. A, Atomic, molecular, and optical physics.

[23]  Síle Nic Chormaic,et al.  Reflection of metastable neon atoms by a surface plasmon wave , 1993 .

[24]  Meschede,et al.  Reflection of thermal Cs atoms grazing a polished glass surface. , 1986, Physical review. A, General physics.

[25]  King,et al.  Demonstration of a fundamental quantum logic gate. , 1995, Physical review letters.

[26]  R. J. Cook Atomic motion in resonant radiation: An application of Ehrenfest's theorem , 1979 .

[27]  Gardiner,et al.  Decoherence, continuous observation, and quantum computing: A cavity QED model. , 1995, Physical review letters.

[28]  Eivind Almaas,et al.  Radiation forces on a micrometer-sized sphere in an evanescent field , 1995 .

[29]  Taylor,et al.  Fabry-Pérot interferometer for atoms. , 1993, Physical review. A, Atomic, molecular, and optical physics.

[30]  Heine,et al.  Reflection of metastable argon atoms from an evanescent wave. , 1994, Physical review. A, Atomic, molecular, and optical physics.

[31]  C. cohen-tannoudji,et al.  Laser cooling below the Doppler limit by polarization gradients: simple theoretical models , 1989 .

[32]  Walraven,et al.  Quantum reflection: Focusing of hydrogen atoms with a concave mirror. , 1989, Physical review letters.

[33]  S. Chu,et al.  Normal-incidence reflection of slow atoms from an optical evanescent wave. , 1990, Optics letters.

[34]  D. Walls,et al.  Quantum dynamics of bouncing atoms in a stable gravitational cavity , 1995 .

[35]  H. J. Korsch,et al.  A new integrable gravitational billiard , 1991 .

[36]  Y. Ovchinnikov,et al.  An atomic trap based on evanescent light waves , 1991 .

[37]  J. Hajnal,et al.  Optics for Neutral Atomic Beams: Reflection and Diffraction of Sodium Atoms by Evanescent Laser Light Fields , 1990 .

[38]  H. Lehtihet,et al.  Numerical study of a billiard in a gravitational field , 1986 .

[39]  J. Mlynek,et al.  Proposal for a magneto-optical beam splitter for atoms (Erratum) , 1993 .

[40]  V. Letokhov,et al.  Laser Optics of Neutral Atomic Beams , 1989 .

[41]  A. Ashkin Acceleration and trapping of particles by radiation pressure , 1970 .

[42]  Atomic cavity with light-induced mirrors , 1989 .

[43]  Salomon,et al.  Raman cooling of cesium below 3 nK: New approach inspired by Lévy flight statistics. , 1995, Physical review letters.

[44]  C. cohen-tannoudji,et al.  Cesium atoms bouncing in a stable gravitational cavity. , 1993, Physical review letters.

[45]  D. Pritchard,et al.  Trapping and focusing ground state atoms with static fields , 1992 .

[46]  Sang Soo Lee,et al.  Theoretical calculations of optical force exerted on a dielectric sphere in the evanescent field generated with a totally-reflected focused gaussian beam , 1994 .

[47]  Steane,et al.  Phase modulation of atomic de Broglie waves. , 1995, Physical review letters.

[48]  Hinds,et al.  Realization of a magnetic mirror for cold atoms. , 1995, Physical review letters.

[49]  Petter Minnhagen,et al.  The two-dimensional Coulomb gas, vortex unbinding, and superfluid-superconducting films , 1987 .

[50]  R. Feynman Simulating physics with computers , 1999 .

[51]  J. Hajnal,et al.  Reflection and diffraction of sodium atoms by evanescent laser light fields , 1989 .

[52]  Savage,et al.  Atomic gravitational cavities from hollow optical fibers. , 1995, Physical review. A, Atomic, molecular, and optical physics.

[53]  A. F. J. Levi,et al.  Whispering-gallery mode microdisk lasers , 1992 .

[54]  Arthur Ashkin,et al.  Trapping of Atoms by Resonance Radiation Pressure , 1978 .

[55]  Sidorov,et al.  Quantum-state-selective mirror reflection of atoms by laser light. , 1988, Physical review letters.

[56]  M. Zhu,et al.  Prospects for using laser-prepared atomic fountains for optical frequency standards applications , 1989 .

[57]  W. Seifert,et al.  Resonant enhancement of evanescent waves with a thin dielectric waveguide , 1994 .

[58]  H. Wallis Quantum theory of atomic motion in laser light , 1995 .

[59]  Keith,et al.  Diffraction of atoms by a transmission grating. , 1988, Physical review letters.

[60]  A. P. Kazantsev,et al.  Scattering of atoms by light , 1985 .

[61]  C. cohen-tannoudji,et al.  Dressed-atom approach to atomic motion in laser light: the dipole force revisited , 1985 .

[62]  Schleich,et al.  Quantum lens for atomic waves. , 1994, Physical review letters.

[63]  Tan,et al.  Analysis of atomic mirrors based on light-induced forces. , 1994, Physical Review A. Atomic, Molecular, and Optical Physics.

[64]  W. Seifert,et al.  Reflection of atoms from a dielectric wave guide , 1994 .

[65]  E. Marcatili,et al.  Hollow metallic and dielectric waveguides for long distance optical transmission and lasers , 1964 .

[66]  Lin,et al.  Cavity quantum electrodynamic enhancement of stimulated emission in microdroplets. , 1991, Physical review letters.

[67]  Savage,et al.  Coherent atomic waveguides from hollow optical fibers: Quantized atomic motion. , 1994, Physical review. A, Atomic, molecular, and optical physics.

[68]  Wallis,et al.  Reflection and diffraction of atomic de Broglie waves by an evanescent laser wave. , 1993, Physical review. A, Atomic, molecular, and optical physics.

[69]  Walls,et al.  Separation and superposition of atomic wave packets by reflection and transmission by an optical ripple mirror. , 1993, Physical Review A. Atomic, Molecular, and Optical Physics.

[70]  Shudong Jiang,et al.  Reproducible Fabrication Technique of Nanometric Tip Diameter Fiber Probe for Photon Scanning Tunneling Microscope , 1992 .

[71]  D. Weiss,et al.  Quantized atom-field force at the surface of a microsphere. , 1994, Optics letters.

[72]  D. Deutsch,et al.  Rapid solution of problems by quantum computation , 1992, Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences.

[73]  Cornell,et al.  Evanescent-wave guiding of atoms in hollow optical fibers. , 1996, Physical review. A, Atomic, molecular, and optical physics.

[74]  P. Meystre,et al.  Optics and interferometry with atoms , 1992 .

[75]  K. Shimoda Atoms in precision electromagnetic measurements , 1989 .

[76]  Aspect,et al.  Nondestructive detection of atoms bouncing on an evanescent wave. , 1995, Physical review. A, Atomic, molecular, and optical physics.

[77]  J. Gordon,et al.  Motion of atoms in a radiation trap , 1980 .

[78]  Chu,et al.  Long atomic coherence times in an optical dipole trap. , 1995, Physical review letters.

[79]  Chu,et al.  Atomic interferometry using stimulated Raman transitions. , 1991, Physical review letters.

[80]  J. Dalibard,et al.  Trapping atoms in a gravitational cavity , 1992 .

[81]  Blatt,et al.  "Dark" squeezed states of the motion of a trapped ion. , 1993, Physical review letters.

[82]  Lenz,et al.  Nonlinear atom optics: General formalism and atomic solitons. , 1994, Physical review. A, Atomic, molecular, and optical physics.

[83]  V. Letokhov,et al.  Laser guiding of atoms in a hollow optical fiber , 1993 .

[84]  Murphy,et al.  Velocity-tuned resonances in the diffraction of atoms by an evanescent field. , 1994, Physical review. A, Atomic, molecular, and optical physics.

[85]  W. Ertmer,et al.  Diffraction and reflection of a slow metastable neon beam by an evanescent light grating , 1994 .

[86]  Cornell,et al.  Laser-guided atoms in hollow-core optical fibers. , 1995, Physical review letters.

[87]  R. J. Cook,et al.  An electromagnetic mirror for neutral atoms , 1982 .

[88]  Adams,et al.  Magneto-optical beam splitter for atoms. , 1993, Physical review letters.