Spinally applied ketamine or morphine attenuate peripheral inflammation and hyperalgesia in acute and chronic phases of experimental arthritis

[1]  C. Geis,et al.  Mild experimental autoimmune encephalitis as a tool to induce blood–brain barrier dysfunction , 2010, Journal of Neural Transmission.

[2]  H. Schaible,et al.  Gait abnormalities differentially indicate pain or structural joint damage in monoarticular antigen-induced arthritis , 2009, PAIN®.

[3]  H. Schaible,et al.  Experimental arthritis causes tumor necrosis factor-α-dependent infiltration of macrophages into rat dorsal root ganglia which correlates with pain-related behavior , 2009, PAIN®.

[4]  S. Prescott,et al.  Chloride regulation in the pain pathway , 2009, Brain Research Reviews.

[5]  Andrew S.C. Rice,et al.  Animal models and the prediction of efficacy in clinical trials of analgesic drugs: A critical appraisal and call for uniform reporting standards , 2008, PAIN.

[6]  R. Straub,et al.  Disrupted brain-immune system-joint communication during experimental arthritis. , 2008, Arthritis and rheumatism.

[7]  V. Pavlov,et al.  Spinal p38 MAP kinase regulates peripheral cholinergic outflow. , 2008, Arthritis and rheumatism.

[8]  H. Schaible,et al.  Antinociceptive effects of tumor necrosis factor alpha neutralization in a rat model of antigen-induced arthritis: evidence of a neuronal target. , 2008, Arthritis and rheumatism.

[9]  N. Gibran,et al.  Topical substance P increases inflammatory cell density in genetically diabetic murine wounds , 2008, Wound repair and regeneration : official publication of the Wound Healing Society [and] the European Tissue Repair Society.

[10]  R. Straub,et al.  Neuroendocrine immune pathways in chronic arthritis. , 2008, Best practice & research. Clinical rheumatology.

[11]  C. R. Tonussi,et al.  Intrathecally Injected Morphine Inhibits Inflammatory Paw Edema: The Involvement of Nitric Oxide and Cyclic-Guanosine Monophosphate , 2008, Anesthesia and analgesia.

[12]  W. Falk,et al.  Anti-inflammatory role of sympathetic nerves in chronic intestinal inflammation , 2008, Gut.

[13]  S. Maier,et al.  “Listening” and “talking” to neurons: Implications of immune activation for pain control and increasing the efficacy of opioids , 2007, Brain Research Reviews.

[14]  C. Sommer,et al.  Differences in inflammatory pain in nNOS‐, iNOS‐ and eNOS‐deficient mice , 2007, European journal of pain.

[15]  J. Puzas,et al.  Amelioration of pain and histopathologic joint abnormalities in the Col1-IL-1beta(XAT) mouse model of arthritis by intraarticular induction of mu-opioid receptor into the temporomandibular joint. , 2007, Arthritis and rheumatism.

[16]  S. Yamada,et al.  Different effects of morphine and morphine-6β-glucuronide on formalin-evoked spinal glutamate release in conscious and freely moving rats , 2007, Neuroscience Letters.

[17]  L. Sorkin,et al.  Regulation of Peripheral Inflammation by Spinal p38 MAP Kinase in Rats , 2006, PLoS medicine.

[18]  W. Turski,et al.  Effect of glutamate receptor antagonists and antirheumatic drugs on proliferation of synoviocytes in vitro. , 2006, European journal of pharmacology.

[19]  Y. Goshima,et al.  Effects of ketamine and propofol on inflammatory responses of primary glial cell cultures stimulated with lipopolysaccharide. , 2005, British journal of anaesthesia.

[20]  Valentin A. Pavlov,et al.  The cholinergic anti-inflammatory pathway , 2005, Brain, Behavior, and Immunity.

[21]  M. Annetta,et al.  Ketamine: new indications for an old drug. , 2005, Current drug targets.

[22]  J. Schölmerich,et al.  An opposing time-dependent immune-modulating effect of the sympathetic nervous system conferred by altering the cytokine profile in the local lymph nodes and spleen of mice with type II collagen-induced arthritis. , 2005, Arthritis and rheumatism.

[23]  C. R. Tonussi,et al.  Evidence for a spinal serotonergic control of the peripheral inflammation in the rat. , 2005, Life sciences.

[24]  J. Eisenach,et al.  Intrathecal Morphine Reduces Allodynia after Peripheral Nerve Injury in Rats via Activation of a Spinal A1 Adenosine Receptor , 2005, Anesthesiology.

[25]  K. Walker,et al.  Pharmacological characterisation of a rat model of incisional pain , 2004, British journal of pharmacology.

[26]  L. Sorkin,et al.  Regulation of peripheral inflammation by spinal adenosine: role of somatic afferent fibers , 2003, Experimental Neurology.

[27]  N. Shenker,et al.  A review of contralateral responses to a unilateral inflammatory lesion. , 2003, Rheumatology.

[28]  C. Pietra,et al.  Antinociceptive Activity of the N-Methyl-d-aspartate Receptor Antagonist N-(2-Indanyl)-glycinamide Hydrochloride (CHF3381) in Experimental Models of Inflammatory and Neuropathic Pain , 2003, Journal of Pharmacology and Experimental Therapeutics.

[29]  C. R. Tonussi,et al.  A spinal mechanism for the peripheral anti-inflammatory action of indomethacin , 2003, Brain Research.

[30]  L. Sorkin,et al.  Spinal adenosine receptor activation inhibits inflammation and joint destruction in rat adjuvant-induced arthritis. , 2002, Arthritis and rheumatism.

[31]  H. Schaible,et al.  Spinal Prostaglandins Are Involved in the Development But Not the Maintenance of Inflammation-Induced Spinal Hyperexcitability , 2001, The Journal of Neuroscience.

[32]  R. Przewłocki,et al.  Opioids in chronic pain. , 2001, European journal of pharmacology.

[33]  C. Laurido,et al.  Effect of ketamine on spinal cord nociceptive transmission in normal and monoarthritic rats , 2001, Neuroreport.

[34]  J. Han,et al.  Repeated administration of low dose ketamine for the treatment of monoarthritic pain in the rat. , 2000, Life sciences.

[35]  A. Shigematsu,et al.  Ketamine suppresses proinflammatory cytokine production in human whole blood in vitro. , 1999, Anesthesia and analgesia.

[36]  A. Burton,et al.  Preemptive intrathecal ketamine injection produces a long-lasting decrease in neuropathic pain behaviors in a rat model. , 1999, Regional anesthesia and pain medicine.

[37]  W. Willis Dorsal root potentials and dorsal root reflexes: a double-edged sword , 1999, Experimental Brain Research.

[38]  Shuxian Hu,et al.  Activation of mu opioid receptors inhibits microglial cell chemotaxis. , 1997, Journal of Pharmacology and Experimental Therapeutics.

[39]  A. Dickenson,et al.  The pharmacology of excitatory and inhibitory amino acid-mediated events in the transmission and modulation of pain in the spinal cord. , 1997, General pharmacology.

[40]  R. Day,et al.  Effect of μ-opioids morphine and buprenorphine on the development of adjuvant arthritis in rats , 1996, Inflammation Research.

[41]  F. Cerveró,et al.  Mechanisms of touch-evoked pain (allodynia): a new model , 1996, Pain.

[42]  M. Shimaoka,et al.  Ketamine inhibits nitric oxide production in mouse-activated macrophage-like cells. , 1996, British journal of anaesthesia.

[43]  H. Buerkle,et al.  Comparison of the Spinal Actions of the micro‐Opioid Remifentanil with Alfentanil and Morphine in the Rat , 1996, Anesthesiology.

[44]  W. Willis,et al.  Differential effects of N-methyl-D-aspartate (NMDA) and non-NMDA receptor antagonists on spinal release of amino acids after development of acute arthritis in rats , 1994, Brain Research.

[45]  Y. Jan,et al.  Evidence for presynaptic N-methyl-D-aspartate autoreceptors in the spinal cord dorsal horn. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[46]  C. Advokat,et al.  Evidence of a role for N-methyl-D-aspartate (NMDA) receptors in the facilitation of tail withdrawal after spinal transection , 1994, Pharmacology Biochemistry and Behavior.

[47]  K. Westlund,et al.  Joint inflammation is reduced by dorsal rhizotomy and not by sympathectomy or spinal cord transection. , 1994, Annals of the rheumatic diseases.

[48]  W. Willis,et al.  Joint inflammation and hyperalgesia are reduced by spinal bicuculline. , 1993, Neuroreport.

[49]  K. Westlund,et al.  Centrally administered non-NMDA but not NMDA receptor antagonists block peripheral knee joint inflammation , 1993, Pain.

[50]  H. Schaible,et al.  N-methyl-D-aspartate (NMDA) and non-NMDA receptor antagonists block the hyperexcitability of dorsal horn neurons during development of acute arthritis in rat's knee joint. , 1993, Journal of neurophysiology.

[51]  R. Dubner,et al.  The intrathecal administration of excitatory amino acid receptor antagonists selectively attenuated carrageenan-induced behavioral hyperalgesia in rats. , 1992, European journal of pharmacology.

[52]  W. Willis,et al.  Neural changes in acute arthritis in monkeys. IV. Time-course of amino acid release into the lumbar dorsal horn , 1992, Brain Research Reviews.

[53]  R. Dubner,et al.  Opiates suppress carrageenan-induced edema and hyperthermia at doses that inhibit hyperalgesia , 1990, Pain.

[54]  N. Jensen,et al.  Morphine, morphine-6-glucuronide and morphine-3-glucuronide concentrations in plasma and cerebrospinal fluid during long-term high-dose intrathecal morphine administration , 1990, Pain.

[55]  R. Dubner,et al.  A new and sensitive method for measuring thermal nociception in cutaneous hyperalgesia , 1987, Pain.

[56]  A. Basbaum,et al.  Contribution of sensory afferents and sympathetic efferents to joint injury in experimental arthritis , 1986, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[57]  B. R. Ahuja Analgesic effect of intrathecal ketamine in rats. , 1984, British journal of anaesthesia.

[58]  B. R. Ahuja ANALGESIC EFFECT OF INTRATHECHAL KETAMINE IN RATS , 1983 .

[59]  S. Kennedy,et al.  Quantitative aspects of normal locomotion in rats. , 1979, Life sciences.

[60]  B. R. Sastry Morphine and met-enkephalin effects on sural Adelta afferent terminal excitability. , 1978, European journal of pharmacology.

[61]  T. Yaksh,et al.  Induction of tolerance and withdrawal in rats receiving morphine in the spinal subarachnoid space. , 1977, European journal of pharmacology.

[62]  T. Yaksh,et al.  Chronic catheterization of the spinal subarachnoid space , 1976, Physiology & Behavior.

[63]  L. Watkins,et al.  Pathological and protective roles of glia in chronic pain , 2009, Nature Reviews Neuroscience.

[64]  Eckard Oberdisse,et al.  Pharmakologie und Toxikologie: Arzneimittelwirkungen verstehen – Medikamente gezielt einsetzen , 2006 .

[65]  R. Griffiths Characterisation and pharmacological sensitivity of antigen arthritis induced by methylated bovine serum albumin in the rat , 2005, Agents and Actions.

[66]  T. Vanderah,et al.  Underlying mechanisms of pronociceptive consequences of prolonged morphine exposure , 2005, Biopolymers.

[67]  H. Schaible,et al.  Changes in the Effect of Spinal Prostaglandin E 2 during Inflammation : Prostaglandin E ( EP 1 – EP 4 ) Receptors in Spinal Nociceptive Processing of Input from the Normal or Inflamed Knee Joint , 2004 .

[68]  M. Goebeler,et al.  Substance P and calcitonin gene-related peptide modulate leukocyte infiltration to mouse skin during allergic contact dermatitis , 2004, Archives of Dermatological Research.

[69]  A. Turnbull,et al.  Regulation of the hypothalamic-pituitary-adrenal axis by cytokines: actions and mechanisms of action. , 1999, Physiological reviews.

[70]  R. Day,et al.  Effect of mu-opioids morphine and buprenorphine on the development of adjuvant arthritis in rats. , 1996, Inflammation research : official journal of the European Histamine Research Society ... [et al.].

[71]  E. Oberdisse Allgemeine und spezielle Pharmakologie und Toxikologie , 1983 .

[72]  G. Fischbach,et al.  Enkephalin inhibits release of substance P from sensory neurons in culture and decreases action potential duration. , 1979, Proceedings of the National Academy of Sciences of the United States of America.