Wave-number estimates for regularized combined field boundary integral operators in acoustic scattering problems with Neumann boundary conditions

We study the coercivity properties and the norm dependence on the wavenumber k of certain regularized combined field boundary integral operators that we recently introduced for the solution of two and three-dimensional acoustic scattering problems with Neumann boundary conditions. We show that in the case of circular and spherical boundaries, our regularized combined field boundary integral operators are L coercive for large enough values of the coupling parameter, and that the norms of these operators are bounded by constant multiples of the coupling parameter. We establish that the norms of the regularized combined field boundary integral operators grow modestly with the wavenumber k for smooth boundaries and we provide numerical evidence that these operators are L coercive for two-dimensional starlike boundaries. We present and analyze a fully discrete collocation (Nystrom) method for the solution of two-dimensional acoustic scattering problems with Neumann boundary conditions based on regularized combined field integral equations. In particular, for analytic boundaries and boundary data, we establish pointwise superalgebraic convergence rates of the discrete solutions.

[1]  Rainer Kress,et al.  On the numerical solution of a hypersingular integral equation in scattering theory , 1995 .

[2]  Y. Saad,et al.  GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems , 1986 .

[3]  P. Harris,et al.  A comparison between various boundary integral formulations of the exterior acoustic problem , 1990 .

[4]  Peter Monk,et al.  Wave-Number-Explicit Bounds in Time-Harmonic Scattering , 2008, SIAM J. Math. Anal..

[5]  G. F. Miller,et al.  The application of integral equation methods to the numerical solution of some exterior boundary-value problems , 1971, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[6]  Ralf Hiptmair,et al.  Regularized Combined Field Integral Equations , 2005, Numerische Mathematik.

[7]  Martin Costabel,et al.  A direct boundary integral equation method for transmission problems , 1985 .

[8]  Timo Betcke,et al.  Numerical Estimation of Coercivity Constants for Boundary Integral Operators in Acoustic Scattering , 2011, SIAM J. Numer. Anal..

[9]  A. Erdélyi,et al.  Tables of integral transforms , 1955 .

[10]  Jian-Ming Jin,et al.  Fast and Efficient Algorithms in Computational Electromagnetics , 2001 .

[11]  R. Kress,et al.  Inverse Acoustic and Electromagnetic Scattering Theory , 1992 .

[12]  G. A. Watson A treatise on the theory of Bessel functions , 1944 .

[13]  Yu. G. Smirnov The solvability of vector integro-differential equations for the problem of the diffraction of an electromagnetic field by screens of arbitrary shape , 1994 .

[14]  H. Helson Harmonic Analysis , 1983 .

[15]  Jianxin Zhou,et al.  Boundary element methods , 1992, Computational mathematics and applications.

[16]  R. Kress Minimizing the condition number of boundary integral operators in acoustic and electromagnetic scattering , 1985 .

[17]  R. Kress,et al.  Integral equation methods in scattering theory , 1983 .

[18]  X. Antoine,et al.  Alternative integral equations for the iterative solution of acoustic scattering problems , 2005 .

[19]  J. Nédélec Acoustic and electromagnetic equations , 2001 .

[20]  Oscar P. Bruno,et al.  Regularized integral equations and fast high‐order solvers for sound‐hard acoustic scattering problems , 2012 .

[21]  Ivan G. Graham,et al.  A hybrid numerical-asymptotic boundary integral method for high-frequency acoustic scattering , 2007, Numerische Mathematik.

[22]  Ralf Hiptmair,et al.  A Coercive Combined Field Integral Equation for Electromagnetic Scattering , 2004, SIAM J. Numer. Anal..

[23]  Jean-Claude Nédélec,et al.  Des préconditionneurs pour la résolution numérique des équations intégrales de frontière de l'acoustique , 2000 .

[24]  Erich Martensen,et al.  Über eine Methode zum räumlichen Neumannschen Problem mit einer Anwendung für torusartige Berandungen , 1963 .

[25]  Milton Abramowitz,et al.  Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables , 1964 .

[26]  R.J. Adams,et al.  Combined field integral equation formulations for electromagnetic scattering from convex geometries , 2004, IEEE Transactions on Antennas and Propagation.

[27]  Gennadi Vainikko,et al.  Periodic Integral and Pseudodifferential Equations with Numerical Approximation , 2001 .

[28]  X. Antoine,et al.  GENERALIZED COMBINED FIELD INTEGRAL EQUATIONS FOR THE ITERATIVE SOLUTION OF THE THREE-DIMENSIONAL HELMHOLTZ EQUATION , 2007 .

[29]  Oscar P. Bruno,et al.  Surface scattering in three dimensions: an accelerated high–order solver , 2001, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[30]  B. Dembart,et al.  Well-conditioned boundary integral equations for three-dimensional electromagnetic scattering , 2002 .