Control of doppler shift compensation in the greater horseshoe bat,Rhinolophus ferrumequinum

SummaryFlyingRhinolophus ferrumequinum lower the frequency of the constant frequency part (fA) of the emitted sounds in order to compensate for Doppler shifts caused by the flight speed. The echo frequency (fE) is kept constant within a frequency band of about 200 Hz, the center frequency of which is about 150 Hz above the average or resting frequency (fR) emitted by roosting bats shortly before take off. For the compensation they use a feedback control system in which the emission frequency is changed to hold the echo frequency at a criterion value. This feedback system was demonstrated by experiments with bats flying in an experimental wind tunnel and in a He-O2-micture. In the wind tunnelRhinolophus lowers the emission frequency in order to compensate for Doppler shifts which are caused by the ground speed flown by the bat. In the He-O2-mixtureRhinolophus compensates for Doppler shifts which correspond to the different sound speeds in the gas mixture.

[1]  A. Novick Orientation in paleotropical bats. I. Microchiroptera. , 1958, The Journal of experimental zoology.

[2]  A. Brosset La Biologie des chiroptères , 1966 .

[3]  H. Schnitzler,et al.  On- and off-responses in the inferior colliculus of the Greater Horseshoe bat to pure tones , 2004, Zeitschrift für vergleichende Physiologie.

[4]  H. Schnitzler Fledermäuse im Windkanal , 1971, Zeitschrift für vergleichende Physiologie.

[5]  H. Schnitzler,et al.  Echoortung bei der Fledermaus Chilonycteris rubiginosa , 1970, Zeitschrift für vergleichende Physiologie.

[6]  H. Schnitzler Comparison of the echolocation behavior in Rhinolophus ferrum-equinum and Chilonycteris rubiginosa , 1970 .

[7]  Hans-Ulrich Schnitzler Fledermuse im Windkanal@@@Bats in the wind tunnel , 1971 .

[8]  A. Brosset The Bats of Central and Western India. Part Iv , 1962 .

[9]  G. Neuweiler Neurophysiologische Untersuchungen zum Echoortungssystem der Großen Hufeisennase Rhinolophus ferrum equinum Schreber, 1774 , 1970, Zeitschrift für vergleichende Physiologie.

[10]  A. Grinnell Comparative auditory neurophysiology of neotropical bats employing different echolocation signals , 1970, Zeitschrift für vergleichende Physiologie.

[11]  A. Grinnell,et al.  Neural correlates of vertical localization by echo‐locating bats. , 1965, The Journal of physiology.

[12]  K. D. Roeder ECHOES OF ULTRASONIC PULSES FROM FLYING MOTHS , 1963 .

[13]  A. Pye The structure of the cochlea in chiroptera. I. Microchiroptera: Emballonuroidea and Rhinolophoidea , 1966, Journal of morphology.

[14]  H. Schnitzler,et al.  Die Ultraschall-Ortungslaute der Hufeisen-Fledermäuse (Chiroptera-Rhinolophidae) in verschiedenen Orientierungssituationen , 1968, Zeitschrift für vergleichende Physiologie.

[15]  H. Schneider,et al.  Die Ohrbewegungen der Hufeisenfledermäuse (Chiroptera, Rhinolophidae) und der Mechanismus des Bildhörens , 2004, Zeitschrift für vergleichende Physiologie.

[16]  H. Schnitzler,et al.  Ortungsleistungen der FledermausRhinolophus ferrumequinum bei ein- und beidseitiger Ohrverstopfung , 1973, Journal of comparative physiology.

[17]  D. Griffin,et al.  Correlated Orientation Sounds and Ear Movements of Horseshoe Bats , 1962, Nature.

[18]  R. Lindsay,et al.  Listening in the Dark , 1958 .

[19]  Echoortung bei Rhinolophus ferrumequinum mit frequenzmodulierten Lauten. Evoked Potentials im Colliculus inferior , 1972 .