Ultra-high pressure apparatus

Abstract This review applies to static pressure apparatus capable of developing pressures over about 25 kbar for purposes of scientific measurements of the physical and chemical behavior of matter, and in some cases for the high-pressure, high-temperature, synthesis of materials like diamond and cubic boron nitride. A brief history is presented, and major emphasis is given to geometry and stress/strain analysis and the properties of materials that are useful in ultra-high pressure (UHP) apparatuses. Examples are given, and analyzed, of various kinds of UHP apparatuses which have been used extensively in actual service. Finally there is an assessment of the future possibilities for realizing pressures greater than those that have been attained to date.

[1]  H. T. Hall Some High‐Pressure, High‐Temperature Apparatus Design Considerations: Equipment for Use at 100 000 Atmospheres and 3000°C , 1958 .

[2]  H. T. Hall Ultra‐High‐Pressure, High‐Temperature Apparatus: the ``Belt'' , 1960 .

[3]  A. Ruoff On the ultimate yield strength of solids , 1978 .

[4]  Stanley Block,et al.  Ultrahigh pressure diamond‐anvil cell and several semiconductor phase transition pressures in relation to the fixed point pressure scale , 1975 .

[5]  F. Bundy,et al.  The stress‐strain curves for cemented tungsten carbide and sintered diamond compact , 1978 .

[6]  A. Onodera,et al.  Synthetic Diamond as a Pressure Generator , 1986, Science.

[7]  H. Mao,et al.  Generation of static pressures above 2.5 megabars in a diamond‐anvil pressure cell , 1985 .

[8]  R. H. Wentorf Synthesis of the Cubic Form of Boron Nitride , 1961 .

[9]  The stability of a sample in a diamond anvil cell , 1987 .

[10]  R C DeVries,et al.  Absolute pressure measurements and analysis of diamonds subjected to maximum static pressures of 1.3-1.7 Mbar. , 1979, The Review of scientific instruments.

[11]  William A. Bassett,et al.  Miniature diamond anvil pressure cell for single crystal x‐ray diffraction studies , 1974 .

[12]  John O. Hallquist,et al.  Finite element analysis of the diamond anvil cell: Achieving 4.6 Mbar , 1986 .

[13]  F. Bundy,et al.  Application of sintered diamond tipped ultra high pressure apparatus to cryogenic experiments , 1980 .

[14]  R. C. Devries Plastic deformation and “work-hardening” of diamond , 1975 .

[15]  A. Ruoff On the yield strength of diamond , 1979 .

[16]  Taro Takahashi,et al.  X‐Ray Diffraction and Optical Observations on Crystalline Solids up to 300 kbar , 1967 .

[17]  J. Bird,et al.  Melting of Diamond , 1984, Science.

[18]  F. Bundy Designing tapered anvil apparatus for achieving higher pressures , 1977 .

[19]  Stanley Block,et al.  Calibration of the pressure dependence of the R1 ruby fluorescence line to 195 kbar , 1975 .

[20]  M. Bruno,et al.  Stress analysis of a beveled diamond anvil , 1984 .

[21]  R. Biswas,et al.  Complex tetrahedral structures of silicon and carbon under pressure , 1984 .

[22]  Percy Williams Bridgman,et al.  The physics of high pressure , 1931 .

[23]  G. Huber,et al.  Pressure dependence of4flevels in europium pentaphosphate up to 400 kbar , 1977 .

[24]  日本学術振興会,et al.  High-Pressure Research in Geophysics , 1982 .

[25]  K. Goettel,et al.  Finite element design of diamond anvils , 1987 .

[26]  T. Evans,et al.  Plastic bending of diamond plates , 1965 .

[27]  M. Yin,et al.  Will diamond transform under megabar pressures , 1983 .

[28]  F. Bundy,et al.  Direct Conversion of Graphite to Diamond in Static Pressure Apparatus. , 1962, Science.

[29]  Stanley Block,et al.  Pressure‐Temperature Phase Diagram of Zirconia , 1985 .

[30]  F. Bundy,et al.  Man-Made Diamonds , 1955, Nature.

[31]  A. Jayaraman,et al.  Diamond anvil cell and high-pressure physical investigations , 1983 .

[32]  A. Ruoff,et al.  The compressive strength of perfect diamond , 1979 .

[33]  Robert M. Hazen,et al.  High‐Pressure Research in Mineral Physics , 1988 .

[34]  F. Bundy Ultrahigh pressure apparatus using cemented tungsten carbide pistons with sintered diamond tips , 1975 .