Allometric Prediction of Locomotor Performance: An Example from Southeast Asian Flying Lizards

Allometric scaling analysis is the standard paradigm for studies attempting to unravel the consequences of evolutionary size change (Huxley 1932; Gould 1966; SchmidtNielsen 1984). Although the value of this approach is clear, prediction of the allometry of performance is often hamstrung by the complexity of biological systems. This complexity derives from the heterogeneous interaction of physiological and morphological variables that together determine maximal performance. Despite this complication, allometric analysis is widely employed primarily because understanding the consequences of size evolution is so important to our field. Not only does size influence virtually every aspect of an organism’s biology (Calder 1984; Schmidt-Nielsen 1984), but it is also remarkably variable, even among closely related species. There is little consensus in the literature regarding the expected relationship between morphology and locomotor performance over a range of sizes. Despite a diversity of alternative models attempting to predict the allometry of performance (Thompson 1917; Hill 1950; Alexander 1968; McMahon 1973, 1975, 1984; Gunther 1975; Bennet-Clark 1977; Rubin and Lanyon 1984; Marsh 1988, 1994; Wakeling et al. 1999), empirical data often fail to conform to any extant model (e.g., Emerson 1978; Garland 1983, 1985; Chappell 1989; Katz and Gosline 1993; Bennett 2000; Wil-

[1]  T. Garland,et al.  PHYLOGENETIC ANALYSES OF THE CORRELATED EVOLUTION OF CONTINUOUS CHARACTERS: A SIMULATION STUDY , 1991, Evolution; international journal of organic evolution.

[2]  J. Roughgarden,et al.  Resource Partitioning and Interspecific Competition in Two Two-Species Insular Anolis Lizard Communities , 1982, Science.

[3]  K. Schmidt-Nielsen,et al.  Scaling, why is animal size so important? , 1984 .

[4]  Robert Brown On Size and Life , 1985, The Yale Journal of Biology and Medicine.

[5]  Michael LaBarbera,et al.  ANALYZING BODY SIZE AS A FACTOR IN ECOLOGY AND EVOLUTION , 1989 .

[6]  R. Marsh Ontogenesis of contractile properties of skeletal muscle and sprint performance in the lizard Dipsosaurus dorsalis. , 1988, The Journal of experimental biology.

[7]  S. Sweet Allometric Inference in Morphology , 1980 .

[8]  M. Bennett Unifying Principles in Terrestrial Locomotion: Do Hopping Australian Marsupials Fit In?* , 2000, Physiological and Biochemical Zoology.

[9]  Morphological and ecological variation in the flying lizards (Genus Draco) / Robert F. Inger. , 1983 .

[10]  H. Ota,et al.  Phylogenetic Relationships of the Flying Lizards, Genus Draco (Reptilia, Agamidae) , 1999 .

[11]  G. Perry,et al.  Anolis lizards of the Caribbean : ecology, evolution, and plate tectonics , 1997 .

[12]  John M. Gosline,et al.  ONTOGENETIC SCALING OF JUMP PERFORMANCE IN THE AFRICAN DESERT LOCUST (SCHISTOCERCA GREGARIA) , 1993 .

[13]  J. McGuire,et al.  Phylogenetic systematics of Southeast Asian flying lizards (Iguania: Agamidae: Draco) as inferred from mitochondrial DNA sequence data , 2001 .

[14]  D'arcy W. Thompson,et al.  On Growth and Form , 1917, Nature.

[15]  Bruce A. Young,et al.  On a Flap and a Foot: Aerial Locomotion in the “Flying” Gecko, Ptychozoon kuhli , 2002 .

[16]  N. Hairston Observations on the Behavior of Draco volans in the Philippines , 1957 .

[17]  T. Price,et al.  Correlated evolution and independent contrasts. , 1997, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[18]  E. H. Taylor The Lizards of Thailand , 1963 .

[19]  J. Murray,et al.  Scale Effects in Animal Locomotion. , 1978 .

[20]  W. Jungers,et al.  Shape, relative size, and size‐adjustments in morphometrics , 1995 .

[21]  T. Yoshino,et al.  Field Observations on the Social Behavior of the Flying Lizard, Draco volans sumatranus, in Borneo , 1994 .

[22]  T. Garland,et al.  Sprint performance of phrynosomatid lizards, measured on a high‐speed treadmill, correlates with hindlimb length , 1999 .

[23]  Andrew Rambaut,et al.  Comparative analysis by independent contrasts (CAIC): an Apple Macintosh application for analysing comparative data , 1995, Comput. Appl. Biosci..

[24]  M. Koehl,et al.  THE INTERACTION OF BEHAVIORAL AND MORPHOLOGICAL CHANGE IN THE EVOLUTION OF A NOVEL LOCOMOTOR TYPE: “FLYING” FROGS , 1990, Evolution; international journal of organic evolution.

[25]  J. Roughgarden,et al.  Effects of reduced perch-height separation on competition between two Anolis lizards , 1985 .

[26]  T. Garland,et al.  Procedures for the Analysis of Comparative Data Using Phylogenetically Independent Contrasts , 1992 .

[27]  T. Schoener Size Patterns in West Indian Anolis Lizards. II. Correlations with the Sizes of Particular Sympatric Species-Displacement and Convergence , 1970, The American Naturalist.

[28]  J. McGuire,et al.  A TAXONOMIC REVISION OF THE FLYING LIZARDS (IGUANIA: AGAMIDAE: DRACO) OF THE PHILIPPINE ISLANDS, WITH A DESCRIPTION OF A NEW SPECIES , 2000 .

[29]  R. M. Alexander,et al.  Exploring Biomechanics: Animals in Motion , 1992 .

[30]  T. McMahon Using body size to understand the structural design of animals: quadrupedal locomotion. , 1975, Journal of applied physiology.

[31]  W. Ricker Linear Regressions in Fishery Research , 1973 .

[32]  G. Serio,et al.  A new method for calculating evolutionary substitution rates , 2005, Journal of Molecular Evolution.

[33]  J. Losos,et al.  Correlates of sprinting, jumping and parachuting performance in the butterfly lizard, Leiolepis belliani , 1989 .

[34]  Field observations on the social behavior of the flying lizard, Draco volans sumatranus, in Borneo , 1994 .

[35]  A. Hill Dimensions of Animals and their Muscular Dynamics , 1949, Nature.

[36]  T. Garland Physiological correlates of locomotory performance in a lizard: an allometric approach. , 1984, The American journal of physiology.

[37]  S. Emerson ALLOMETRY AND JUMPING IN FROGS: HELPING THE TWAIN TO MEET , 1978, Evolution; international journal of organic evolution.

[38]  C. Musters Taxonomy of the Genus Draco L. (Agamidae, Lacertilia, Reptilia) , 1983 .

[39]  Dale L. Marcellini,et al.  Analysis of the gliding behavior of Ptychozoon Lionatum (Reptilia: Gekkonidae) , 1976 .

[40]  C. Pantin Problems of Relative Growth , 1932, Nature.

[41]  Ramón Díaz-Uriarte,et al.  TESTING HYPOTHESES OF CORRELATED EVOLUTION USING PHYLOGENETICALLY INDEPENDENT CONTRASTS: SENSITIVITY TO DEVIATIONS FROM BROWNIAN MOTION , 1996 .

[42]  Johnston,et al.  The biomechanics of fast-starts during ontogeny in the common carp cyprinus carpio , 1999, The Journal of experimental biology.

[43]  The Gliding Flight of Holaspis guentheri Gray, a West-African Lacertid , 1959 .

[44]  S. Vogel Life in Moving Fluids: The Physical Biology of Flow , 1981 .

[45]  Observations on the Mating Behaviour and Copulation in Draco Dussumieri Dum. & Bib. (Reptilia: Sauria) , 1967 .

[46]  Jonathan B. Losos,et al.  Ecomorphology, Performance Capability, and Scaling of West Indian Anolis Lizards: An Evolutionary Analysis , 1990 .

[47]  R. S. Wilson,et al.  Allometric scaling relationships of jumping performance in the striped marsh frog Limnodynastes peronii. , 2000, The Journal of experimental biology.

[48]  J. Socha Kinematics: Gliding flight in the paradise tree snake , 2002, Nature.

[49]  J. Hanken,et al.  Functional and evolutionary mechanisms , 1993 .

[50]  S. Gould ALLOMETRY AND SIZE IN ONTOGENY AND PHYLOGENY , 1966, Biological reviews of the Cambridge Philosophical Society.

[51]  B. Jayne,et al.  Size matters: ontogenetic variation in the three-dimensional kinematics of steady-speed locomotion in the lizard Dipsosaurus dorsalis. , 2000, The Journal of experimental biology.

[52]  A. Grafen The phylogenetic regression. , 1989, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[53]  A. Grandison The Gunong Benom Expedition 1967. 5. Reptiles and amphibians of Gunong Benom with a description of a new species of Macrocalamus , 1972 .

[54]  Thomas A. McMahon,et al.  Muscles, Reflexes, and Locomotion , 1984 .

[55]  W. Calder Size, Function, and Life History , 1988 .

[56]  A. Russell,et al.  Patagial morphology of Draco volans (Reptilia: Agamidae) and the origin of glissant locomotion in flying dragons , 2001 .

[57]  R L Marsh,et al.  Jumping ability of anuran amphibians. , 1994, Advances in veterinary science and comparative medicine.

[58]  D. Bramble,et al.  Functional vertebrate morphology , 1985 .

[59]  E. H. Colbert Adaptations for gliding in the lizard Draco , 1967 .

[60]  B. Jayne,et al.  Comparative three-dimensional kinematics of the hindlimb for high-speed bipedal and quadrupedal locomotion of lizards , 1999, The Journal of experimental biology.

[61]  T. McMahon,et al.  Size and Shape in Biology , 1973, Science.

[62]  L. Heaney,et al.  Body Proportions and Gliding Adaptations of Flying Squirrels (Petauristinae) , 1981 .

[63]  B. Günther Dimensional analysis and theory of biological similarity. , 1975, Physiological reviews.

[64]  J. Roughgarden,et al.  Population experiments with the Anolis lizards of St. Maarten and St. Eustatius. , 1985 .

[65]  Richard Shine,et al.  Costs of reproduction and the evolution of sexual dimorphism in a ‘flying lizard’ Draco melanopogon (Agamidae) , 1998 .

[66]  J. Losos,et al.  THE EVOLUTION OF FORM AND FUNCTION: MORPHOLOGY AND LOCOMOTOR PERFORMANCE IN WEST INDIAN ANOLIS LIZARDS , 1990, Evolution; international journal of organic evolution.

[67]  L E Lanyon,et al.  Dynamic strain similarity in vertebrates; an alternative to allometric limb bone scaling. , 1984, Journal of theoretical biology.

[68]  B. McArdle The structural relationship: regression in biology , 1988 .

[69]  A. Mori,et al.  A Preliminary Study of Sexual Dimorphism in Wing Morphology of Five Species of the Flying Lizards, Genus Draco , 1992 .

[70]  E. Martins The Comparative Method in Evolutionary Biology, Paul H. Harvey, Mark D. Pagel. Oxford University Press, Oxford (1991), vii, + 239 Price $24.95 paperback , 1992 .

[71]  R. Chappell,et al.  Fitting bent lines to data, with applications to allometry. , 1989, Journal of theoretical biology.

[72]  M. Taper,et al.  MODELS OF CHARACTER DISPLACEMENT AND THE THEORETICAL ROBUSTNESS OF TAXON CYCLES , 1992, Evolution; international journal of organic evolution.

[73]  J. Felsenstein Phylogenies and the Comparative Method , 1985, The American Naturalist.