A convenient and robust edge detection method based on ant colony optimization

Abstract Edge detection is usually used as a preprocessing operation in many machine vision industrial applications. Recently, ant colony optimization (ACO) as a relatively new meta-heuristic approach has been used to tackle the edge detection problem. In this work, a convenient and robust method for edge detection based on ACO is proposed, which employs a new heuristic function, adopts a user-defined threshold in pheromone update process and provides a group of suitable parameter values. Experimental results clearly demonstrated the effectiveness of the proposed method, and at the same time, in the presence of noise, the proposed approach outperforms other two ACO-based edge detection techniques and four conventional edge detectors.

[1]  Shengli Xie,et al.  An ant colony optimization algorithm for image edge detection , 2008, 2008 IEEE Congress on Evolutionary Computation (IEEE World Congress on Computational Intelligence).

[2]  Dipak Kumar Ghosh,et al.  Edge detection using ACO and F ratio , 2014, Signal Image Video Process..

[3]  I.E. Abdou,et al.  Quantitative design and evaluation of enhancement/thresholding edge detectors , 1979, Proceedings of the IEEE.

[4]  Luca Maria Gambardella,et al.  Ant Algorithms for Discrete Optimization , 1999, Artificial Life.

[5]  Xinhua Zhuang,et al.  Image feature extraction with the perceptual graph based on the ant colony system , 2004, 2004 IEEE International Conference on Systems, Man and Cybernetics (IEEE Cat. No.04CH37583).

[6]  Karima Benhamza,et al.  Adaptive edge detection using ant colony , 2013, 2013 8th International Workshop on Systems, Signal Processing and their Applications (WoSSPA).

[7]  Chien-Chang Chen,et al.  Edge detection improvement by ant colony optimization , 2008, Pattern Recognit. Lett..

[8]  Manuel López-Ibáñez,et al.  Ant colony optimization , 2010, GECCO '10.

[9]  X. Zhuang Edge feature extraction in digital images with the ant colony system , 2004, 2004 IEEE International Conference onComputational Intelligence for Measurement Systems and Applications, 2004. CIMSA..

[10]  Domenec Puig,et al.  A new methodology for evaluation of edge detectors , 2009, 2009 16th IEEE International Conference on Image Processing (ICIP).

[11]  A. Jevtić,et al.  Ant based edge linking algorithm , 2009, 2009 35th Annual Conference of IEEE Industrial Electronics.

[12]  Hossein Nezamabadi-pour,et al.  Edge detection using ant algorithms , 2006, Soft Comput..

[13]  Joel Quintanilla-Domínguez,et al.  Edge detection using ant colony search algorithm and multiscale contrast enhancement , 2009, 2009 IEEE International Conference on Systems, Man and Cybernetics.

[14]  Charu Gupta,et al.  Edge Detection of an Image based on Ant Colony Optimization Technique , 2013 .

[15]  D Marr,et al.  Theory of edge detection , 1979, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[16]  E. R. Davies Computer and Machine Vision: Theory, Algorithms, Practicalities , 2012 .

[17]  Thomas Stützle,et al.  Ant colony optimization: artificial ants as a computational intelligence technique , 2006 .

[18]  Feijun Song,et al.  Edge detection with large depth of focus using differential Haar-Gaussian wavelet transform , 2007 .

[19]  P. Qiu Jump Surface Estimation, Edge Detection, and Image Restoration , 2007 .

[20]  Anna Veronica Baterina,et al.  Ant colony optimization for image edge detection , 2010 .

[21]  Ming Liu,et al.  A robust edge detection method with sub-pixel accuracy , 2014 .

[22]  Olivier Laligant,et al.  Merging system for multiscale edge detection , 2005 .

[23]  John F. Canny,et al.  A Computational Approach to Edge Detection , 1986, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[24]  Bo Li,et al.  Ant Algorithms for Adaptive Edge Detection , 2013 .

[25]  Qingchang Tan,et al.  Shaft diameter measurement using a digital image , 2014 .