A new approach to the efficient basis set for accurate molecular calculations: Applications to diatomic molecules

The method of the bond function basis set combined with the counterpoise procedure is studied in detail by the complete fourth‐order Mo/ller–Plesset perturbation (MP4) theory, following from a recent communication report [J. Chem. Phys. 98, 2481 (1993)]. This method is applied to calculate molecular dissociation energies De as well as equilibrium bond distances re and harmonic frequencies ωe of a number of diatomic molecules (N2, O2, F2, Cl2, HF, HCl, and CO) and the results are compared with those from other methods, without either counterpoise procedure or bond functions or both. The usefulness of the method is shown by the results for all the molecules using a moderately polarized basis set (2p1d for H atom and 2d1f for heavy atoms) augmented with the universal bond functions 3s3p2d. The method has consistently recovered 98%–99% of the experimental values for De, compared to as low as 90% without bond functions. The effect of bond functions is less significant on the predictions of re and ωe, due prima...

[1]  C. Healey,et al.  THE AR-HF INTERMOLECULAR POTENTIAL : OVERTONE SPECTROSCOPY AND AB INITIO CALCULATIONS , 1993 .

[2]  F. Tao,et al.  AB INITIO SEARCH FOR THE EQUILIBRIUM STRUCTURE OF THE AMMONIA DIMER , 1993 .

[3]  F. Tao The counterpoise method and bond functions in molecular dissociation energy calculations , 1993 .

[4]  M. Gutowski,et al.  Critical evaluation of some computational approaches to the problem of basis set superposition error , 1993 .

[5]  Maciej Gutowski,et al.  Accuracy of the Boys and Bernardi function counterpoise method , 1993 .

[6]  R. Lindh,et al.  Bond length, dipole moment, and harmonic frequency of CO , 1993 .

[7]  F. Tao The use of midbond functions for ab initio calculations of the asymmetric potentials of He-Ne and He-Ar , 1993 .

[8]  F. Tao On the use of bond functions in molecular calculations , 1993 .

[9]  Fu-Ming Tao,et al.  Mo/ller–Plesset perturbation investigation of the He2 potential and the role of midbond basis functions , 1992 .

[10]  F. Tao,et al.  A new approach to theab initio energy of the homodesmic reaction for the resonance energy of benzene , 1992 .

[11]  F. Tao,et al.  An accurate ab initio calculation of the Ne2 potential , 1992 .

[12]  G. Herzberg,et al.  Molecular Spectra and Molecular Structure , 1992 .

[13]  N. Kestner,et al.  Accuracy of counterpoise corrections in second-order intermolecular potential calculations. 1. Helium dimer , 1991 .

[14]  James S. Wright,et al.  Bond functions, covalent potential curves, and the basis set superposition error , 1991 .

[15]  Fu-Ming Tao,et al.  Validity of the function counterpoise method and ab initio calculations of van der Waals interaction energy , 1991 .

[16]  James S. Wright,et al.  MRD‐CI potential surfaces using balanced basis sets. VI. Correlation of bond order with bond function composition for first‐row diatomic molecules , 1991 .

[17]  P. Knowles,et al.  Accurate multireference configuration interaction calculations of the potential energy function and the dissociation energy of N2 , 1991 .

[18]  R. Gijbels,et al.  Accurate ab initio predictions of the dissociation energy and heat of formation of first-row hydrides☆ , 1989 .

[19]  T. W. Dingle,et al.  Contraction of the well‐tempered Gaussian basis sets: The first‐row diatomic molecules , 1989 .

[20]  R. Gijbels,et al.  Combined bond-polarization basis sets for accurate determination of dissociation energies , 1989 .

[21]  R. Gijbels,et al.  Combined bond polarization function basis sets for accurate ab initio calculation of the dissociation energies of AHn molecules (A=LI to F) , 1989 .

[22]  M. Klobukowski,et al.  Well-tempered gaussian basis set expansions of Roothaan-Hartree-Fock atomic wavefunctions for lithium through mercury , 1988 .

[23]  J. Ogilvie The electric dipole moment function of HF , 1988 .

[24]  James S. Wright,et al.  Approaching the exact energy for H2: Bond functions vs polarization functions , 1987 .

[25]  C. Bauschlicher The effect of bond functions on dissociation energies , 1985 .

[26]  R. Ahlrichs,et al.  The impact of higher polarization basis functions on molecular AB initio results II. The ground states of CO, N2, O2, and F2 , 1985 .

[27]  R. Ahlrichs,et al.  The impact of higher polarization basis functions on molecular ab initio results. I. The ground state of F2 , 1985 .

[28]  James S. Wright,et al.  The effect of bond functions on molecular dissociation energies , 1984 .

[29]  Michael J. Frisch,et al.  Self‐consistent molecular orbital methods 25. Supplementary functions for Gaussian basis sets , 1984 .

[30]  Richard J. Williams,et al.  MRD‐CI potential surfaces using balanced basis sets. I. First‐row diatomic hydrides , 1983 .

[31]  C. Bauschlicher CI superposition error caused by bond functions , 1980 .

[32]  A. D. McLean,et al.  Contracted Gaussian basis sets for molecular calculations. I. Second row atoms, Z=11–18 , 1980 .

[33]  Robert J. Buenker,et al.  Configuration interaction calculations for the N2 molecule and its three lowest dissociation limits , 1977 .

[34]  S. Peyerimhoff,et al.  Ab initio CI study of the stability and electronic spectrum of the HOCl molecule , 1977 .

[35]  J. Muenter,et al.  Electric dipole moment of carbon monoxide , 1975 .

[36]  S. F. Boys,et al.  The calculation of small molecular interactions by the differences of separate total energies. Some procedures with reduced errors , 1970 .