Detection of the aromatic molecule benzonitrile (c-C6H5CN) in the interstellar medium

A specific interstellar aromatic molecule Aromatic molecules such as polycyclic aromatic hydrocarbons (PAHs) are known to exist in the interstellar medium owing to their characteristic infrared emission features. However, the infrared emission only indicates the general class of molecule, and identifying which specific molecular species are present is difficult. McGuire et al. used radio astronomy to detect rotational transitions of benzonitrile emitted from a well-known nearby cloud of interstellar gas (see the Perspective by Joblin and Cernicharo). This molecule may be a precursor to more complex PAHs. The identification of benzonitrile sheds light on the composition of aromatic material within the interstellar medium—material that will eventually be incorporated into new stars and planets. Science, this issue p. 202; see also p. 156 Radio astronomy is used to identify the aromatic molecule benzonitrile in the interstellar medium. Polycyclic aromatic hydrocarbons and polycyclic aromatic nitrogen heterocycles are thought to be widespread throughout the universe, because these classes of molecules are probably responsible for the unidentified infrared bands, a set of emission features seen in numerous Galactic and extragalactic sources. Despite their expected ubiquity, astronomical identification of specific aromatic molecules has proven elusive. We present the discovery of benzonitrile (c-C6H5CN), one of the simplest nitrogen-bearing aromatic molecules, in the interstellar medium. We observed hyperfine-resolved transitions of benzonitrile in emission from the molecular cloud TMC-1. Simple aromatic molecules such as benzonitrile may be precursors for polycyclic aromatic hydrocarbon formation, providing a chemical link to the carriers of the unidentified infrared bands.

[1]  P. Thaddeus,et al.  Eight New Carbon Chain Molecules , 1997 .

[2]  Alexander G. G. M. Tielens,et al.  Interstellar Polycyclic Aromatic Hydrocarbon Molecules , 2008 .

[3]  Hyatt Regency XXIX General Assembly of the International Union of Radio Science Union Radio Scientifique Internationale , 2008 .

[4]  H. Baumgärtel,et al.  Structure-dependent Photostability of Polycyclic Aromatic Hydrocarbon Cations: Laboratory Studies and Astrophysical Implications , 1999 .

[5]  R. W. Haas,et al.  Absolute calibration of millimeter-wavelength spectral lines , 1976 .

[6]  D. Nocera,et al.  Photochemistry and radiation chemistry : complementary methods for the study of electron transfer , 1998 .

[7]  J. Mangum,et al.  How to Calculate Molecular Column Density , 2015, 1501.01703.

[8]  Y. Yung,et al.  COSMIC-RAY-MEDIATED FORMATION OF BENZENE ON THE SURFACE OF SATURN’S MOON TITAN , 2010 .

[9]  G. Nyman,et al.  THE 2014 KIDA NETWORK FOR INTERSTELLAR CHEMISTRY , 2015, 1503.01594.

[10]  Herbert M. Pickett,et al.  The fitting and prediction of vibration-rotation spectra with spin interactions , 1991 .

[11]  È. Roueff,et al.  A NEW REFERENCE CHEMICAL COMPOSITION FOR TMC-1 , 2016, 1610.00524.

[12]  O. Berné,et al.  Top-down formation of fullerenes in the interstellar medium. , 2015, Astronomy and astrophysics.

[13]  B. Draine,et al.  Graphite Revisited , 2016, 1608.02975.

[14]  P. Theulé,et al.  Rotational Spectra of Small PAHs: Acenaphthene, Acenaphthylene, Azulene, and Fluorene , 2007 .

[15]  G. Langston,et al.  Non-detection of HC11N towards TMC-1: constraining the chemistry of large carbon-chain molecules , 2016, 1609.02570.

[16]  J. Maier,et al.  Laboratory confirmation of C60+ as the carrier of two diffuse interstellar bands , 2015, Nature.

[17]  R. Kaiser,et al.  Reaction dynamics in astrochemistry: low-temperature pathways to polycyclic aromatic hydrocarbons in the interstellar medium. , 2015, Annual review of physical chemistry.

[18]  S. Leone,et al.  Reactions of the CN radical with benzene and toluene: product detection and low-temperature kinetics. , 2010, The journal of physical chemistry. A.

[19]  D. A. García-Hernández,et al.  Transitory O-rich chemistry in heavily obscured C-rich post-AGB stars , 2016 .

[20]  C. Bauschlicher,et al.  THE NASA AMES PAH IR SPECTROSCOPIC DATABASE VERSION 2.00: UPDATED CONTENT, WEB SITE, AND ON(OFF)LINE TOOLS , 2014 .

[21]  V. Wakelam,et al.  Gas and grain chemical composition in cold cores as predicted by the Nautilus three-phase model , 2016, 1604.05216.

[22]  T. Miyaji,et al.  A 8.8-50 GHz Complete Spectral Line Survey toward TMC-1: I. Survey Data. , 2004 .

[23]  M. Egan,et al.  A Post-AGB Star in the Small Magellanic Cloud Observed with the Spitzer Infrared Spectrograph , 2006, astro-ph/0611127.

[24]  R. Kaiser,et al.  Experimental investigation on the formation of carbon-bearing molecules in the interstellar medium via neutral-neutral reactions. , 2002, Chemical reviews.

[25]  S. Charnley,et al.  Formation of benzene in the interstellar medium , 2010, Proceedings of the National Academy of Sciences.

[26]  Geoffrey A. Blake,et al.  Discovery of the interstellar chiral molecule propylene oxide (CH3CHCH2O) , 2016, Science.

[27]  Stephen J. Klippenstein,et al.  The Recombination of Propargyl Radicals and Other Reactions on a C6H6 Potential , 2003 .

[28]  F. J. Low,et al.  INFRARED CIRRUS - NEW COMPONENTS OF THE EXTENDED INFRARED-EMISSION , 1984 .

[29]  R. Hibbins,et al.  Laboratory spectroscopy and astronomical significance of the fully-benzenoid PAH triphenylene and its cation , 2017 .

[30]  L. Ziurys,et al.  CN in dark interstellar clouds. , 1984 .

[31]  James A. Miller,et al.  Association rate constants for reactions between resonance-stabilized radicals: C3H3 + C3H3, C3H3 + C3H5, and C3H5 + C3H5. , 2007, Physical chemistry chemical physics : PCCP.

[32]  V. Wakelam,et al.  Oxygen depletion in dense molecular clouds: a clue to a low O_2 abundance? , 2011, 1104.1530.

[33]  R. L. Kuczkowski,et al.  Interstellar chemistry: a strategy for detecting polycyclic aromatic hydrocarbons in space. , 2005, Journal of the American Chemical Society.

[34]  S. Kalenskii,et al.  Detection of Interstellar HC5O in TMC-1 with the Green Bank Telescope , 2017, 1706.09766.

[35]  D. Woon Modeling chemical growth processes in Titan's atmosphere: 1. Theoretical rates for reactions between benzene and the ethynyl (C2H) and cyano (CN) radicals at low temperature and pressure , 2006 .

[36]  D. J. Harrison,et al.  Vibrational spectra of benzene derivatives—XVII. Benzonitrile and substituted benzonitriles , 1976 .

[37]  A. Tielens,et al.  THE STRUCTURE, ORIGIN, AND EVOLUTION OF INTERSTELLAR HYDROCARBON GRAINS , 2013 .

[38]  Ana Heras,et al.  Infrared Space Observatory's Discovery of C4H2, C6H2, and Benzene in CRL 618 , 2001 .

[39]  N. Heineking,et al.  Quadrupole Hyperfine Structure in the Rotational Spectrum of Benzonitrile , 1988 .

[40]  H. Martel,et al.  CHEMODYNAMIC EVOLUTION OF DWARF GALAXIES IN TIDAL FIELDS , 2016, 1608.06849.

[41]  C. Joblin,et al.  Search for corannulene (C20H10) in the Red Rectangle , 2009, 0905.1845.

[42]  P. Napier National Radio Astronomy Observatory , 1992 .

[43]  J. Grabow,et al.  Precise dipole moment and quadrupole coupling constants of benzonitrile , 2007, 0709.2984.

[44]  F. H. Field BENZENE PRODUCTION IN THE RADIATION CHEMISTRY OF ACETYLENE , 1964 .

[45]  P. Thaddeus,et al.  Microwave Spectra of 11 Polyyne Carbon Chains , 2000 .

[46]  D. Hudgins,et al.  Variations in the Peak Position of the 6.2 μm Interstellar Emission Feature: A Tracer of N in the Interstellar Polycyclic Aromatic Hydrocarbon Population , 2005 .

[47]  G. Fogarasi,et al.  Scaled quantum mechanical (SQM) force field and theoretical vibrational spectrum for benzonitrile , 1989 .

[48]  J. Bernard-Salas,et al.  THE RICH CIRCUMSTELLAR CHEMISTRY OF SMP LMC 11 , 2011, 1111.2533.

[49]  New H and H2 Reactions with Small Hydrocarbon Ions and Their Roles in Benzene Synthesis in Dense Interstellar Clouds , 1999 .

[50]  J. Burie,et al.  The Rotational Spectrum of Benzonitrile: Experimental and Theoretical Determination of the Quartic Centrifugal Distortion Constants , 1989 .

[51]  J. M. Hollis,et al.  Green Bank Telescope Observations of Interstellar Glycolaldehyde: Low-Temperature Sugar , 2004 .

[52]  W. Wolff,et al.  Non-thermal ion desorption from an acetonitrile (CH3CN) astrophysical ice analogue studied by electron stimulated ion desorption. , 2015, Physical chemistry chemical physics : PCCP.

[53]  E. Herbst,et al.  A study of interstellar aldehydes and enols as tracers of a cosmic ray-driven nonequilibrium synthesis of complex organic molecules , 2016, Proceedings of the National Academy of Sciences.

[54]  L. Kewley,et al.  Spitzer Infrared Nearby Galaxies Survey (SINGS) Imaging of NGC 7331: A Panchromatic View of a Ringed Galaxy , 2004 .