暂无分享,去创建一个
Travis S. Humble | Blair D. Sullivan | Timothy D. Goodrich | Andrew L. Wright | Allison L. Fisher | Eugene Dumitrescu | E. Dumitrescu | T. Humble | T. Goodrich | Allison L. Fisher | Andrew L. Wright
[1] White,et al. Density matrix formulation for quantum renormalization groups. , 1992, Physical review letters.
[2] A. H. Werner,et al. Positive Tensor Network Approach for Simulating Open Quantum Many-Body Systems. , 2014, Physical review letters.
[3] Chi-Chung Lam,et al. On Optimizing a Class of Multi-Dimensional Loops with Reductions for Parallel Execution , 1997, Parallel Process. Lett..
[4] G. Vidal. Efficient classical simulation of slightly entangled quantum computations. , 2003, Physical review letters.
[5] E. Rico,et al. Tensor Networks for Lattice Gauge Theories and Atomic Quantum Simulation , 2013, 1312.3127.
[6] Christian Komusiewicz,et al. The First Parameterized Algorithms and Computational Experiments Challenge , 2017, IPEC.
[7] Hans L. Bodlaender,et al. Computing Treewidth on the GPU , 2017, IPEC.
[8] J. Preskill,et al. Holographic quantum error-correcting codes: toy models for the bulk/boundary correspondence , 2015, 1503.06237.
[9] Andrew J. Ferris,et al. Tensor Networks and Quantum Error Correction , 2013, Physical review letters.
[10] R. Pfeifer,et al. NCON: A tensor network contractor for MATLAB , 2014, 1402.0939.
[11] David Poulin,et al. Tensor-Network Simulations of the Surface Code under Realistic Noise. , 2016, Physical review letters.
[12] Glen Evenbly,et al. Improving the efficiency of variational tensor network algorithms , 2014 .
[13] E. Farhi,et al. A Quantum Approximate Optimization Algorithm , 2014, 1411.4028.
[14] David Pérez-García,et al. Classifying quantum phases using matrix product states and projected entangled pair states , 2011 .
[15] Lloyd C. L. Hollenberg,et al. Optimising Matrix Product State Simulations of Shor's Algorithm , 2017, Quantum.
[16] Igor L. Markov,et al. Simulating Quantum Computation by Contracting Tensor Networks , 2008, SIAM J. Comput..
[17] Eugene Dumitrescu,et al. Tree tensor network approach to simulating Shor's algorithm , 2017, 1705.01140.
[18] E. Rico,et al. Real-time Dynamics in U(1) Lattice Gauge Theories with Tensor Networks , 2015, 1505.04440.
[19] Hans L. Bodlaender,et al. A Partial k-Arboretum of Graphs with Bounded Treewidth , 1998, Theor. Comput. Sci..
[20] John A. Gunnels,et al. Breaking the 49-Qubit Barrier in the Simulation of Quantum Circuits , 2017, 1710.05867.
[21] G. Vidal. Class of quantum many-body states that can be efficiently simulated. , 2006, Physical review letters.
[22] Vibhav Gogate,et al. A Complete Anytime Algorithm for Treewidth , 2004, UAI.
[23] G. Evenbly,et al. Algorithms for entanglement renormalization , 2007, 0707.1454.
[24] J. Eisert,et al. Colloquium: Area laws for the entanglement entropy , 2010 .
[25] F. Verstraete,et al. Matrix product density operators: simulation of finite-temperature and dissipative systems. , 2004, Physical review letters.
[26] Dirk Merkel,et al. Docker: lightweight Linux containers for consistent development and deployment , 2014 .
[27] Ioan Todinca,et al. Treewidth and Minimum Fill-in: Grouping the Minimal Separators , 2001, SIAM J. Comput..
[28] Christian Komusiewicz,et al. The PACE 2017 Parameterized Algorithms and Computational Experiments Challenge: The Second Iteration , 2017, IPEC.
[29] Frank Verstraete,et al. Faster identification of optimal contraction sequences for tensor networks. , 2013, Physical review. E, Statistical, nonlinear, and soft matter physics.
[30] Jason Morton,et al. Tensor Network Contractions for #SAT , 2014, Journal of Statistical Physics.
[31] Derek G. Corneil,et al. Complexity of finding embeddings in a k -tree , 1987 .
[32] Krysta Marie Svore,et al. LIQUi|>: A Software Design Architecture and Domain-Specific Language for Quantum Computing , 2014, ArXiv.
[33] J. Biamonte,et al. Tensor Networks in a Nutshell , 2017, 1708.00006.
[34] H. Neven,et al. Characterizing quantum supremacy in near-term devices , 2016, Nature Physics.