A comparison of the gravity field over Central Europe from superconducting gravimeters, GRACE and global hydrological models, using EOF analysis

We analyse data from seven superconducting gravimeter (SG) stations in Europe from 2002 to 2007 from the Global Geodynamics Project (GGP) and compare seasonal variations with data from GRACE and several global hydrological models—GLDAS, WGHM and ERA-Interim. Our technique is empirical orthogonal function (EOF) decomposition of the fields that allows for the inherent incompatibility of length scales between ground and satellite observations. GGP stations below the ground surface pose a problem because part of the attraction from soil moisture comes from above the gravimeter, and this gives rise to a complex (mixed) gravity response. The first principle component (PC) of the EOF decomposition is the main indicator for comparing the fields, although for some of the series it accounts for only about 50per cent of the variance reduction. PCs for GRACE solutions RL04 from CSR and GFZ are filtered with a cosine taper (degrees 20–40) and a Gaussian window (350km). Significant differences are evident between GRACE solutions from different groups and filters, though they all agree reasonably well with the global hydrological models for the predominantly seasonal signal. We estimate the first PC at 10-d sampling to be accurate to 1 μGal for GGP data, 1.5 μGal for GRACE data and 1 μGal between the three global hydrological models. Within these limits the CNES/GRGS solution and ground GGP data agree at the 79per cent level, and better when the GGP solution is restricted to the three above-ground stations. The major limitation on the GGP side comes from the water mass distribution surrounding the underground instruments that leads to a complex gravity effect. To solve this we propose a method for correcting the SG residual gravity series for the effects of soil moisture above the station.

[1]  Charles S. Zender,et al.  Gravity Recovery and Climate Experiment (GRACE) detection of water storage changes in the Three Gorges Reservoir of China and comparison with in situ measurements , 2011 .

[2]  J. Thepaut,et al.  The ERA‐Interim reanalysis: configuration and performance of the data assimilation system , 2011 .

[3]  S. Rosat,et al.  Comparison of the Micro-g LaCoste gPhone-054 spring gravimeter and the GWR-C026 superconducting gravimeter in Strasbourg (France) using a 300-day time series , 2011 .

[4]  B. Cappelaere,et al.  Local and global hydrological contributions to time-variable gravity in Southwest Niger , 2011 .

[5]  B. Scanlon,et al.  GRACE Hydrological estimates for small basins: Evaluating processing approaches on the High Plains Aquifer, USA , 2010 .

[6]  B. Merz,et al.  Reducing local hydrology from high-precision gravity measurements: a lysimeter-based approach , 2010 .

[7]  S. Seneviratne,et al.  Contrasting response of European forest and grassland energy exchange to heatwaves , 2010 .

[8]  B. Merz,et al.  Measuring the effect of local water storage changes on in situ gravity observations: Case study of the Geodetic Observatory Wettzell, Germany , 2010 .

[9]  Nicolas Le Moigne,et al.  Time-lapse microgravity surveys reveal water storage heterogeneity of a karst aquifer , 2010 .

[10]  B. Meurers Environmental effects on gravity at Conrad Observatory, Austria , 2010 .

[11]  P. Krause,et al.  Evaluating local hydrological modelling by temporal gravity observations and a gravimetric three‐dimensional model , 2010 .

[12]  N. G. Val’es,et al.  CNES/GRGS 10-day gravity field models (release 2) and their evaluation , 2010 .

[13]  L. Longuevergne,et al.  Modelling atmospheric and induced non-tidal oceanic loading contributions to surface gravity and tilt measurements , 2009 .

[14]  T. Klügel,et al.  Correcting gravimeters and tiltmeters for atmospheric mass attraction using operational weather models , 2009 .

[15]  Xiaodong Chen,et al.  Determination of gravimetric parameters of the gravity pole tide using observations recorded with superconducting gravimeters , 2009 .

[16]  H. Dobslaw,et al.  Seasonal effects of non-tidal oceanic mass shifts in observations with superconducting gravimeters , 2009 .

[17]  S. Rosat,et al.  Analysis of a 10-year (1997–2007) record of time-varying gravity in Strasbourg using absolute and superconducting gravimeters: New results on the calibration and comparison with GPS height changes and hydrology , 2009 .

[18]  L. Longuevergne,et al.  Local and global hydrological contributions to gravity variations observed in Strasbourg , 2009 .

[19]  J. Ihde,et al.  Gravity field variations from superconducting gravimeters for GRACE validation , 2009 .

[20]  A. Güntner,et al.  Time series of superconducting gravimeters and water storage variations from the global hydrology model WGHM , 2009 .

[21]  David Crossley,et al.  A review of the GGP network and scientific challenges (Invited) , 2009 .

[22]  J. Kusche,et al.  Changes in total ocean mass derived from GRACE, GPS, and ocean modeling with weekly resolution , 2009 .

[23]  J. Boy,et al.  Variability of the Gravity-to-Height Ratio Due to Surface Loads , 2009 .

[24]  J. C. Savage,et al.  Postseismic relaxation following the 1992 M7.3 Landers and 1999 M7.1 Hector Mine earthquakes, southern California , 2009 .

[25]  T. Klügel,et al.  Simulating the influence of water storage changes on the superconducting gravimeter of the Geodetic Observatory Wettzell, Germany , 2008 .

[26]  F. Lyard,et al.  High‐frequency non‐tidal ocean loading effects on surface gravity measurements , 2008 .

[27]  T. Jahr,et al.  Detection of small hydrological variations in gravity by repeated observations with relative gravimeters , 2008 .

[28]  S. Jayne,et al.  A comparison of in situ bottom pressure array measurements with GRACE estimates in the Kuroshio Extension , 2008 .

[29]  P. Troch,et al.  Evaluating catchment‐scale hydrological modeling by means of terrestrial gravity observations , 2008 .

[30]  S. Petrovic,et al.  Analysis of gravity field variations derived from Superconducting Gravimeter recordings, the GRACE satellite and hydrological models at selected European sites , 2008 .

[31]  Xiaodong Chen,et al.  Loading effect of a self-consistent equilibrium ocean pole tide on the gravimetric parameters of the gravity pole tides at superconducting gravimeter stations , 2008 .

[32]  C. K. Shum,et al.  Signals of extreme weather conditions in Central Europe in GRACE 4-D hydrological mass variations , 2008 .

[33]  Laurent Longuevergne Contribution à l'hydrogéodésie , 2008 .

[34]  Jeffrey B. Basara,et al.  Estimating profile soil moisture and groundwater variations using GRACE and Oklahoma Mesonet soil moisture data , 2008 .

[35]  C. Ancey,et al.  An exact solution for ideal dam‐break floods on steep slopes , 2008 .

[36]  J. Hinderer,et al.  A search for the ratio between gravity variation and vertical displacement due to a surface load , 2007 .

[37]  Fabio Rocca,et al.  A Combination of Space and Terrestrial Geodetic Techniques to Monitor Land Subsidence: Case Study, the Southeastern Po Plain, Italy , 2007 .

[38]  M. Ishiguro,et al.  A procedure for tidal analysis with a Bayesian information criterion , 2007 .

[39]  W. Briggs Statistical Methods in the Atmospheric Sciences , 2007 .

[40]  M. Vanclooster,et al.  Hydrogeological investigations at the Membach station, Belgium, and application to correct long periodic gravity variations , 2006 .

[41]  O. Francis,et al.  Modelling the global ocean tides: modern insights from FES2004 , 2006 .

[42]  S. Swenson,et al.  A comparison of terrestrial water storage variations from GRACE with in situ measurements from Illinois , 2006 .

[43]  S. Swenson,et al.  Post‐processing removal of correlated errors in GRACE data , 2006 .

[44]  S. Swenson,et al.  Accuracy of GRACE mass estimates , 2006 .

[45]  C. Reigber,et al.  Combination of temporal gravity variations resulting from superconducting gravimeter (SG) recordings, GRACE satellite observations and global hydrology models , 2006 .

[46]  H. Wilmes,et al.  Analysis of observations with dual sensor superconducting gravimeters , 2005 .

[47]  C. Shum,et al.  Non-isotropic filtering of GRACE temporal gravity for geophysical signal enhancement , 2005 .

[48]  S. Seneviratne,et al.  GRACE‐derived terrestrial water storage depletion associated with the 2003 European heat wave , 2005 .

[49]  K. Korhonen,et al.  Hydrogeological Effects on Superconducting Gravimeter Measurements at Metsahovi in Finland , 2005 .

[50]  Peter Schwintzer,et al.  Seasonal variation of ocean bottom pressure derived from Gravity Recovery and Climate Experiment (GRACE): Local validation and global patterns , 2005 .

[51]  Benjamin F. Chao,et al.  Precise evaluation of atmospheric loading effects on Earth's time-variable gravity field , 2005 .

[52]  J. Boy,et al.  Time variation of the European gravity field from superconducting gravimeters , 2005 .

[53]  O. Francis,et al.  Uncertainty of absolute gravity measurements , 2005 .

[54]  J. Boy,et al.  Regional gravity variations in Europe from superconducting gravimeters , 2004 .

[55]  H. Virtanen Loading effects in Metsähovi from the atmosphere and the Baltic Sea , 2004 .

[56]  J. Hagedoorn,et al.  Gravity reduction with three-dimensional atmospheric pressure data for precise ground gravity measurements , 2004 .

[57]  L. Longuevergne,et al.  Local hydrology, the Global Geodynamics Project and CHAMP/GRACE perspective: some case studies , 2004 .

[58]  Victor Zlotnicki,et al.  Time‐variable gravity from GRACE: First results , 2004 .

[59]  Jeffrey P. Walker,et al.  THE GLOBAL LAND DATA ASSIMILATION SYSTEM , 2004 .

[60]  S. Swenson,et al.  Estimated accuracies of regional water storage variations inferred from the Gravity Recovery and Climate Experiment (GRACE) , 2003 .

[61]  J. Hinderer,et al.  The potential of ground gravity measurements to validate GRACE data , 2003 .

[62]  J. Mäkinen,et al.  The effect of the Baltic Sea level on gravity at the Metsähovi station , 2003 .

[63]  Florent Lyard,et al.  Modeling the barotropic response of the global ocean to atmospheric wind and pressure forcing ‐ comparisons with observations , 2003 .

[64]  P. Döll,et al.  A global hydrological model for deriving water availability indicators: model tuning and validation , 2003 .

[65]  P. Milly,et al.  Global Modeling of Land Water and Energy Balances. Part I: The Land Dynamics (LaD) Model , 2002 .

[66]  P. Milly,et al.  Global Modeling of Land Water and Energy Balances. Part II: Land-Characteristic Contributions to Spatial Variability , 2002 .

[67]  J. Boy,et al.  Reduction of surface gravity data from global atmospheric pressure loading , 2002 .

[68]  J. Wahr,et al.  Potential Problems With the use of Gravimeter Data for GRACE Cal/Val , 2001 .

[69]  B. Richter,et al.  Height and gravity variations by continuous GPS, gravity and environmental parameter observations in the southern Po Plain, near Bologna, Italy , 2001 .

[70]  F. Bryan,et al.  Time variability of the Earth's gravity field: Hydrological and oceanic effects and their possible detection using GRACE , 1998 .

[71]  D. R. Bower,et al.  Precipitation effects on gravity measurements at the Canadian Absolute Gravity Site , 1998 .

[72]  Véronique Dehant,et al.  Tidal Parameters for An Inelastic Earth , 1987 .

[73]  C. Jekeli Alternative methods to smooth the Earth's gravity field , 1981 .

[74]  R. Warburton,et al.  The influence of barometric‐pressure variations on gravity , 1977 .

[75]  W. Farrell Deformation of the Earth by surface loads , 1972 .

[76]  A. T. Doodson The Harmonic Development of the Tide-Generating Potential , 1921 .

[77]  M. Bilker‐Koivula,et al.  Comparison of superconducting gravimeter observations with hydrological models of various spatial extents , 2011 .

[78]  M. Abe,et al.  Assessment of atmospheric reductions for terrestrial gravity observations , 2011 .

[79]  S. Eisner,et al.  Evaluating local hydrological modelling by temporal gravity observations and a gravimetric 3D model , 2010 .

[80]  J. Boy,et al.  Status of the GGP Satellite Project , 2009 .

[81]  R. Falk,et al.  Precise Gravity Time Series and Instrumental Properties from Combination of Superconducting and Absolute Gravity Measurements , 2009 .

[82]  V. Pálinkás Modelling Hydrological Effects on Gravity , 2009 .

[83]  Guillaume Ramillien,et al.  Application of AVHRR imagery and GRACE measurements for calculation of actual evapotranspiration over the Quaternary aquifer (Lake Chad basin) and validation of groundwater models , 2008 .

[84]  Caroline Rozier de Linage Mesures gravimétriques au sol et satellitaires : Etude du rapport entre variation de pesanteur et déplacement vertical et apport de la mission spatiale GRACE à l’étude des surcharges hydrologiques et des très grands séismes , 2008 .

[85]  J. Hinderer,et al.  Gravimetric Methods – Superconducting Gravity Meters , 2007 .

[86]  T. Jahr,et al.  Hydrological signals in gravity — foe or friend? , 2007 .

[87]  J. Boy,et al.  Study of the seasonal gravity signal in superconducting gravimeter data , 2006 .

[88]  T. Jahr,et al.  Hydrological experiments around the superconducting gravimeter at Moxa Observatory , 2006 .

[89]  O. Andersen,et al.  Seasonal changes in the European gravity field from GRACE: A comparison with superconducting gravimeters and hydrology model predictions , 2006 .

[90]  K. Seo,et al.  Estimating GRACE Aliasing Errors , 2005 .

[91]  H.-G. Wenzel,et al.  The nanogal software : Earth tide data processing package ETERNA 3.30 , 1996 .

[92]  Y. Tamura A harmonic development of the tide-generating potential , 1987 .