Dynamical complexity and computation in recurrent neural networks beyond their fixed point

[1]  Fredric M. Wolf,et al.  Random Wiring, Ganglion Cell Mosaics, and the Functional Architecture of the Visual Cortex , 2015, PLoS Comput. Biol..

[2]  Louis M Pecora,et al.  Synchronization of chaotic systems. , 2015, Chaos.

[3]  H Sompolinsky,et al.  Dynamics of random neural networks with bistable units. , 2014, Physical review. E, Statistical, nonlinear, and soft matter physics.

[4]  H. Sompolinsky,et al.  Sparseness and Expansion in Sensory Representations , 2014, Neuron.

[5]  Sitabhra Sinha,et al.  Complex patterns arise through spontaneous symmetry breaking in dense homogeneous networks of neural oscillators , 2013, Scientific Reports.

[6]  L. Abbott,et al.  Random Convergence of Olfactory Inputs in the Drosophila Mushroom Body , 2013, Nature.

[7]  G. Wainrib,et al.  Topological and dynamical complexity of random neural networks. , 2012, Physical review letters.

[8]  H. Sompolinsky,et al.  Compressed sensing, sparsity, and dimensionality in neuronal information processing and data analysis. , 2012, Annual review of neuroscience.

[9]  L Pesquera,et al.  Photonic information processing beyond Turing: an optoelectronic implementation of reservoir computing. , 2012, Optics express.

[10]  Benjamin Schrauwen,et al.  Optoelectronic Reservoir Computing , 2011, Scientific Reports.

[11]  J. Fell,et al.  The role of phase synchronization in memory processes , 2011, Nature Reviews Neuroscience.

[12]  Olaf Sporns,et al.  The Non-Random Brain: Efficiency, Economy, and Complex Dynamics , 2010, Front. Comput. Neurosci..

[13]  Mehdi Khamassi,et al.  Coherent Theta Oscillations and Reorganization of Spike Timing in the Hippocampal- Prefrontal Network upon Learning , 2010, Neuron.

[14]  L. F. Abbott,et al.  Generating Coherent Patterns of Activity from Chaotic Neural Networks , 2009, Neuron.

[15]  S. Marco,et al.  Biologically Inspired Signal Processing for Chemical Sensing , 2009 .

[16]  Michael Elad,et al.  From Sparse Solutions of Systems of Equations to Sparse Modeling of Signals and Images , 2009, SIAM Rev..

[17]  Nikolai Axmacher,et al.  Phase-locking within human mediotemporal lobe predicts memory formation , 2008, NeuroImage.

[18]  Du Qu Wei,et al.  Ordering spatiotemporal chaos in discrete neural networks with small-world connections , 2007 .

[19]  Robert A. Legenstein,et al.  At the Edge of Chaos: Real-time Computations and Self-Organized Criticality in Recurrent Neural Networks , 2004, NIPS.

[20]  Nils Bertschinger,et al.  Real-Time Computation at the Edge of Chaos in Recurrent Neural Networks , 2004, Neural Computation.

[21]  Harald Haas,et al.  Harnessing Nonlinearity: Predicting Chaotic Systems and Saving Energy in Wireless Communication , 2004, Science.

[22]  D. Debanne,et al.  Long-term plasticity of intrinsic excitability: learning rules and mechanisms. , 2003, Learning & memory.

[23]  Sanjoy Dasgupta,et al.  An elementary proof of a theorem of Johnson and Lindenstrauss , 2003, Random Struct. Algorithms.

[24]  C. Gray,et al.  Dynamic spike threshold reveals a mechanism for synaptic coincidence detection in cortical neurons in vivo. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[25]  P Rappelsberger,et al.  Long-range EEG synchronization during word encoding correlates with successful memory performance. , 2000, Brain research. Cognitive brain research.

[26]  Christoph Braun,et al.  Coherence of gamma-band EEG activity as a basis for associative learning , 1999, Nature.

[27]  Piotr Indyk,et al.  Approximate nearest neighbors: towards removing the curse of dimensionality , 1998, STOC '98.

[28]  W. Singer,et al.  Integrator or coincidence detector? The role of the cortical neuron revisited , 1996, Trends in Neurosciences.

[29]  M. Rosenstein,et al.  A practical method for calculating largest Lyapunov exponents from small data sets , 1993 .

[30]  Christopher G. Langton,et al.  Computation at the edge of chaos: Phase transitions and emergent computation , 1990 .

[31]  Sommers,et al.  Chaos in random neural networks. , 1988, Physical review letters.

[32]  Farmer,et al.  Predicting chaotic time series. , 1987, Physical review letters.

[33]  L. Glass,et al.  Oscillation and chaos in physiological control systems. , 1977, Science.

[34]  C. E. SHANNON,et al.  A mathematical theory of communication , 1948, MOCO.

[35]  Sang Joon Kim,et al.  A Mathematical Theory of Communication , 2006 .

[36]  H. Kantz,et al.  Nonlinear time series analysis , 1997 .

[37]  Ronald J. MacGregor,et al.  Neural and brain modeling , 1987 .

[38]  Yasuji Sawada,et al.  Practical Methods of Measuring the Generalized Dimension and the Largest Lyapunov Exponent in High Dimensional Chaotic Systems , 1987 .

[39]  F. Takens Detecting strange attractors in turbulence , 1981 .

[40]  E M Harth,et al.  Brain functions and neural dynamics. , 1970, Journal of theoretical biology.