Adaptive-critic based optimal neuro control synthesis for distributed parameter systems

[1]  Andrew R. Barron,et al.  Universal approximation bounds for superpositions of a sigmoidal function , 1993, IEEE Trans. Inf. Theory.

[2]  Kumpati S. Narendra,et al.  Identification and control of dynamical systems using neural networks , 1990, IEEE Trans. Neural Networks.

[3]  Peter J. Gawthrop,et al.  Neural networks for control systems - A survey , 1992, Autom..

[4]  George Cybenko,et al.  Approximation by superpositions of a sigmoidal function , 1992, Math. Control. Signals Syst..

[5]  S. N. Balakrishnan,et al.  Adaptive-critic based neural networks for aircraft optimal control , 1996 .

[6]  Harvey Thomas Banks,et al.  Smart material structures: Modeling, estimation, and control , 1996 .

[7]  Arthur E. Bryson,et al.  Applied Optimal Control , 1969 .

[8]  Bernard Widrow,et al.  Punish/Reward: Learning with a Critic in Adaptive Threshold Systems , 1973, IEEE Trans. Syst. Man Cybern..

[9]  E. Wagner International Series of Numerical Mathematics , 1963 .

[10]  Edward S. Plumer,et al.  Optimal control of terminal processes using neural networks , 1996, IEEE Trans. Neural Networks.

[11]  Richard S. Sutton,et al.  Neuronlike adaptive elements that can solve difficult learning control problems , 1983, IEEE Transactions on Systems, Man, and Cybernetics.

[12]  Andrew P. Sage,et al.  Gradient and Quasi-linearization Computational Techniques for Distributed Parameter Systems , 1967 .

[13]  C. Goh,et al.  Direct training method for a continuous-time nonlinear optimal feedback controller , 1995 .

[14]  S. Ravindran,et al.  A Reduced Basis Method for Control Problems Governed by PDEs , 1998 .

[15]  T. Kohda,et al.  A design method of optimal control system by use of neural network , 1997, Proceedings of International Conference on Neural Networks (ICNN'97).