Temporal Tracking of Microglia Activation in Neurodegeneration at Single-Cell Resolution

[1]  Michael J. Grusby,et al.  Absence of MHC class ii molecules reduces CNS demyelination, microglial/macrophage infiltration, and twitching in murine globoid cell leukodystrophy , 1994, Cell.

[2]  L. Tsai,et al.  Conversion of p35 to p25 deregulates Cdk5 activity and promotes neurodegeneration , 1999, Nature.

[3]  V. Nguyen,et al.  IFN-γ Regulation of Class II Transactivator Promoter IV in Macrophages and Microglia: Involvement of the Suppressors of Cytokine Signaling-1 Protein , 2001, The Journal of Immunology.

[4]  J. Trowsdale,et al.  Genetic Control of MHC Class II Expression , 2002, Cell.

[5]  Li-Huei Tsai,et al.  Aberrant Cdk5 Activation by p25 Triggers Pathological Events Leading to Neurodegeneration and Neurofibrillary Tangles , 2003, Neuron.

[6]  L. Tsai,et al.  A Jekyll and Hyde kinase: roles for Cdk5 in brain development and disease , 2004, Current Opinion in Neurobiology.

[7]  Petti T. Pang,et al.  Opposing Roles of Transient and Prolonged Expression of p25 in Synaptic Plasticity and Hippocampus-Dependent Memory , 2005, Neuron.

[8]  L. Tsai,et al.  p25/Cyclin-Dependent Kinase 5 Induces Production and Intraneuronal Accumulation of Amyloid β In Vivo , 2006, The Journal of Neuroscience.

[9]  Geoffrey E. Hinton,et al.  Visualizing Data using t-SNE , 2008 .

[10]  P. L. Peng,et al.  Deregulation of HDAC1 by p25/Cdk5 in Neurotoxicity , 2008, Neuron.

[11]  Charles C. Kim,et al.  Molecular definition of the identity and activation of natural killer cells , 2012, Nature Immunology.

[12]  M. Daly,et al.  Variant TREM2 as risk factor for Alzheimer's disease. , 2013, The New England journal of medicine.

[13]  L. Tran,et al.  Integrated Systems Approach Identifies Genetic Nodes and Networks in Late-Onset Alzheimer’s Disease , 2013, Cell.

[14]  A. Aguzzi,et al.  Microglia: Scapegoat, Saboteur, or Something Else? , 2013, Science.

[15]  Marco Prinz,et al.  Microglia and brain macrophages in the molecular age: from origin to neuropsychiatric disease , 2014, Nature Reviews Neuroscience.

[16]  P. Kharchenko,et al.  Bayesian approach to single-cell differential expression analysis , 2014, Nature Methods.

[17]  I. Amit,et al.  Tissue-Resident Macrophage Enhancer Landscapes Are Shaped by the Local Microenvironment , 2014, Cell.

[18]  S. Gygi,et al.  Identification of a Unique TGF-β Dependent Molecular and Functional Signature in Microglia , 2013, Nature Neuroscience.

[19]  E. Hol,et al.  Isolation of glia from Alzheimer's mice reveals inflammation and dysfunction , 2014, Neurobiology of Aging.

[20]  T. Wyss-Coray,et al.  Microglial dysfunction in brain aging and Alzheimer's disease. , 2014, Biochemical pharmacology.

[21]  Åsa K. Björklund,et al.  Full-length RNA-seq from single cells using Smart-seq2 , 2014, Nature Protocols.

[22]  Rona S. Gertner,et al.  Single cell RNA Seq reveals dynamic paracrine control of cellular variation , 2014, Nature.

[23]  T. Maniatis,et al.  An RNA-Sequencing Transcriptome and Splicing Database of Glia, Neurons, and Vascular Cells of the Cerebral Cortex , 2014, The Journal of Neuroscience.

[24]  L. Probert TNF and its receptors in the CNS: The essential, the desirable and the deleterious effects , 2015, Neuroscience.

[25]  Manolis Kellis,et al.  Conserved epigenomic signals in mice and humans reveal immune basis of Alzheimer’s disease , 2015, Nature.

[26]  D. Holtzman,et al.  TREM2 lipid sensing sustains microglia response in an Alzheimer’s disease model , 2015, Cell.

[27]  Rona S. Gertner,et al.  Single-Cell Genomics Unveils Critical Regulators of Th17 Cell Pathogenicity , 2015, Cell.

[28]  A. Kröger,et al.  DNA damage primes the type I interferon system via the cytosolic DNA sensor STING to promote anti-microbial innate immunity. , 2015, Immunity.

[29]  Burkhard Becher,et al.  Immune attack: the role of inflammation in Alzheimer disease , 2015, Nature Reviews Neuroscience.

[30]  Mariella G. Filbin,et al.  Single-cell RNA-seq supports a developmental hierarchy in human oligodendroglioma , 2016, Nature.

[31]  Emery N. Brown,et al.  Author Correction: Gamma frequency entrainment attenuates amyloid load and modifies microglia , 2018, Nature.

[32]  D. Bouvier,et al.  High Resolution Dissection of Reactive Glial Nets in Alzheimer’s Disease , 2016, Scientific Reports.

[33]  A. Nimmerjahn,et al.  TAM receptors regulate multiple features of microglial physiology , 2016, Nature.

[34]  I. Amit,et al.  A Unique Microglia Type Associated with Restricting Development of Alzheimer’s Disease , 2017, Cell.

[35]  Manoj Kumar,et al.  INGE GRUNDKE-IQBAL AWARD FOR ALZHEIMER’S RESEARCH: NEUROTOXIC REACTIVE ASTROCYTES ARE INDUCED BY ACTIVATED MICROGLIA , 2019, Alzheimer's & Dementia.

[36]  M. Schaub,et al.  SC3 - consensus clustering of single-cell RNA-Seq data , 2016, Nature Methods.

[37]  R. Leite,et al.  Transcriptomic analysis of purified human cortical microglia reveals age-associated changes , 2017, Nature Neuroscience.

[38]  E. Blalock,et al.  Transcriptional signatures of brain aging and Alzheimer’s disease: What are our rodent models telling us? , 2017, Behavioural Brain Research.