Join-Graph Propagation Algorithms

The paper investigates parameterized approximate message-passing schemes that are based on bounded inference and are inspired by Pearl's belief propagation algorithm (BP). We start with the bounded inference mini-clustering algorithm and then move to the iterative scheme called Iterative Join-Graph Propagation (IJGP), that combines both iteration and bounded inference. Algorithm IJGP belongs to the class of Generalized Belief Propagation algorithms, a framework that allowed connections with approximate algorithms from statistical physics and is shown empirically to surpass the performance of mini-clustering and belief propagation, as well as a number of other state-of-the-art algorithms on several classes of networks. We also provide insight into the accuracy of iterative BP and IJGP by relating these algorithms to well known classes of constraint propagation schemes.

[1]  W. Freeman,et al.  Generalized Belief Propagation , 2000, NIPS.

[2]  Rina Dechter,et al.  A Simple Insight into Iterative Belief Propagation's Success , 2003, UAI.

[3]  Adnan Darwiche,et al.  A Variational Approach for Approximating Bayesian Networks by Edge Deletion , 2006, UAI.

[4]  Irina Rish,et al.  Mini-buckets : a general scheme for approximatinginferenceRina Dechter and , 1998 .

[5]  R. Dechter,et al.  Up and Down Mini-Buckets: A Scheme for Approximating Combinatorial Optimization Tasks , 2001 .

[6]  Alessandro Pelizzola,et al.  Cluster Variation Method in Statistical Physics and Probabilistic Graphical Models , 2005, ArXiv.

[7]  Robert G. Gallager,et al.  Low-density parity-check codes , 1962, IRE Trans. Inf. Theory.

[8]  Gregory F. Cooper,et al.  The Computational Complexity of Probabilistic Inference Using Bayesian Belief Networks , 1990, Artif. Intell..

[9]  Stefan Arnborg,et al.  Efficient algorithms for combinatorial problems on graphs with bounded decomposability — A survey , 1985, BIT.

[10]  A. Glavieux,et al.  Near Shannon limit error-correcting coding and decoding: Turbo-codes. 1 , 1993, Proceedings of ICC '93 - IEEE International Conference on Communications.

[11]  Rina Dechter,et al.  AND/OR search spaces for graphical models , 2007, Artif. Intell..

[12]  Nevin Lianwen Zhang,et al.  A computational theory of decision networks , 1993, Int. J. Approx. Reason..

[13]  Alan K. Mackworth Consistency in Networks of Relations , 1977, Artif. Intell..

[14]  William T. Freeman,et al.  Constructing free-energy approximations and generalized belief propagation algorithms , 2005, IEEE Transactions on Information Theory.

[15]  Steffen L. Lauritzen,et al.  Bayesian updating in causal probabilistic networks by local computations , 1990 .

[16]  Rina Dechter,et al.  Bucket Elimination: A Unifying Framework for Reasoning , 1999, Artif. Intell..

[17]  Javier Larrosa,et al.  A General Scheme for Multiple Lower Bound Computation in Constraint Optimization , 2001, CP.

[18]  Prakash P. Shenoy,et al.  Probability propagation , 1990, Annals of Mathematics and Artificial Intelligence.

[19]  M. Mézard,et al.  Survey propagation: An algorithm for satisfiability , 2005 .

[20]  Vibhav Gogate,et al.  SampleSearch: A Scheme that Searches for Consistent Samples , 2007, AISTATS.

[21]  Robert J. McEliece,et al.  Belief Propagation on Partially Ordered Sets , 2003, Mathematical Systems Theory in Biology, Communications, Computation, and Finance.

[22]  Rina Dechter,et al.  Iterative Join-Graph Propagation , 2002, UAI.

[23]  Rina Dechter,et al.  Tree Clustering for Constraint Networks , 1989, Artif. Intell..

[24]  R. Dechter,et al.  Unifying Cluster-Tree Decompositions for Reasoning in Graphical models ∗ , 2005 .

[25]  Roman Barták,et al.  Constraint Processing , 2009, Encyclopedia of Artificial Intelligence.

[26]  Dan Geiger,et al.  Variational Upper and Lower Bounds for Probabilistic Graphical Models , 2008, J. Comput. Biol..

[27]  Christophe Lecoutre Constraint Networks , 1992 .

[28]  Rina Dechter,et al.  On the Power of Belief Propagation: A Constraint Propagation Perspective , 2010 .

[29]  Michael Chertkov,et al.  Loop series for discrete statistical models on graphs , 2006, ArXiv.

[30]  Rina Dechter,et al.  A general scheme for automatic generation of search heuristics from specification dependencies , 2001, Artif. Intell..

[31]  Rina Dechter,et al.  A Scheme for Approximating Probabilistic Inference , 1997, UAI.

[32]  Judea Pearl,et al.  Probabilistic reasoning in intelligent systems , 1988 .

[33]  Rina Dechter,et al.  Network-Based Heuristics for Constraint-Satisfaction Problems , 1987, Artif. Intell..

[34]  David J. Spiegelhalter,et al.  Local computations with probabilities on graphical structures and their application to expert systems , 1990 .

[35]  Tom Minka,et al.  Expectation Propagation for approximate Bayesian inference , 2001, UAI.

[36]  Toniann Pitassi,et al.  Value Elimination: Bayesian Interence via Backtracking Search , 2002, UAI.

[37]  Vibhav Gogate,et al.  Sampling algorithms for probabilistic graphical models with determinism , 2009 .

[38]  R. Dechter,et al.  Heuristics, Probability and Causality. A Tribute to Judea Pearl , 2010 .

[39]  Michael Luby,et al.  Approximating Probabilistic Inference in Bayesian Belief Networks is NP-Hard , 1993, Artif. Intell..

[40]  S. Kak Information, physics, and computation , 1996 .

[41]  Javier Larrosa,et al.  Unifying tree decompositions for reasoning in graphical models , 2005, Artif. Intell..

[42]  Judea Pearl,et al.  Probabilistic reasoning in intelligent systems - networks of plausible inference , 1991, Morgan Kaufmann series in representation and reasoning.

[43]  T. Toffoli Physics and computation , 1982 .

[44]  R. Kikuchi A Theory of Cooperative Phenomena , 1951 .

[45]  Manfred Jaeger,et al.  Compiling relational Bayesian networks for exact inference , 2006, Int. J. Approx. Reason..

[46]  Rina Dechter,et al.  Bucket elimination: A unifying framework for probabilistic inference , 1996, UAI.

[47]  Rina Dechter,et al.  Mini-buckets: a general scheme for approximating inference , 2002 .

[48]  Yuan Qi,et al.  Tree-structured Approximations by Expectation Propagation , 2003, NIPS.

[49]  Adnan Darwiche,et al.  Recursive conditioning , 2001, Artif. Intell..

[50]  Jung-Fu Cheng,et al.  Turbo Decoding as an Instance of Pearl's "Belief Propagation" Algorithm , 1998, IEEE J. Sel. Areas Commun..

[51]  Rina Dechter,et al.  Approximation algorithms for graphical models , 2001 .

[52]  Adnan Darwiche,et al.  Node Splitting: A Scheme for Generating Upper Bounds in Bayesian Networks , 2007, UAI.

[53]  Dan Roth,et al.  On the Hardness of Approximate Reasoning , 1993, IJCAI.

[54]  Vicenç Gómez,et al.  Truncating the Loop Series Expansion for Belief Propagation , 2006, J. Mach. Learn. Res..

[55]  Adnan Darwiche,et al.  An Edge Deletion Semantics for Belief Propagation and its Practical Impact on Approximation Quality , 2006, AAAI.

[56]  Georg Gottlob,et al.  A Comparison of Structural CSP Decomposition Methods , 1999, IJCAI.

[57]  David Maier,et al.  The Theory of Relational Databases , 1983 .

[58]  Rina Dechter,et al.  Tree approximation for belief updating , 2002, AAAI/IAAI.

[59]  Prakash P. Shenoy,et al.  Valuation-Based Systems for Bayesian Decision Analysis , 1992, Oper. Res..

[60]  M. Mézard,et al.  Analytic and Algorithmic Solution of Random Satisfiability Problems , 2002, Science.

[61]  Dan Geiger,et al.  Optimizing exact genetic linkage computations , 2003, RECOMB '03.

[62]  Changhe Yuan,et al.  An Importance Sampling Algorithm Based on Evidence Pre-propagation , 2002, UAI.

[63]  Rina Dechter,et al.  Evaluating partition strategies for mini-bucket elimination , 2010, ISAIM.

[64]  Yee Whye Teh,et al.  Structured Region Graphs: Morphing EP into GBP , 2005, UAI.

[65]  Rina Dechter,et al.  Mini-buckets: A general scheme for bounded inference , 2003, JACM.

[66]  Christopher Meek,et al.  MAS: a multiplicative approximation scheme for probabilistic inference , 2008, NIPS.

[67]  Adnan Darwiche,et al.  On probabilistic inference by weighted model counting , 2008, Artif. Intell..

[68]  Riccardo Zecchina,et al.  Survey propagation: An algorithm for satisfiability , 2002, Random Struct. Algorithms.