REMNANTS OF BINARY WHITE DWARF MERGERS

We carry out a comprehensive smooth particle hydrodynamics simulation survey of double-degenerate white dwarf binary mergers of varying mass combinations in order to establish correspondence between initial conditions and remnant configurations. We find that all but one of our simulation remnants share general properties such as a cold, degenerate core surrounded by a hot disk, while our least massive pair of stars forms only a hot disk. We characterize our remnant configurations by the core mass, the rotational velocity of the core, and the half-mass radius of the disk. We also find that some of our simulations with very massive constituent stars exhibit helium detonations on the surface of the primary star before complete disruption of the secondary. However, these helium detonations are insufficiently energetic to ignite carbon, and so do not lead to prompt carbon detonations.

[1]  Sung-Chul Yoon,et al.  Remnant evolution after a carbon–oxygen white dwarf merger , 2007, 0704.0297.

[2]  J. Prieto,et al.  Accepted for publication in ApJL Preprint typeset using L ATEX style emulateapj v. 10/09/06 THE LUMINOUS AND CARBON-RICH SUPERNOVA 2006GZ: A DOUBLE DEGENERATE MERGER? , 2022 .

[3]  F. Douglas Swesty,et al.  The Accuracy, Consistency, and Speed of an Electron-Positron Equation of State Based on Table Interpolation of the Helmholtz Free Energy , 2000 .

[4]  F. Timmes,et al.  On Type Ia Supernovae From The Collisions of Two White Dwarfs , 2009, 0907.3915.

[5]  The maximum mass of ideal white dwarfs , 1931 .

[6]  W. Hillebrandt,et al.  Violent mergers of nearly equal-mass white dwarf as progenitors of subluminous Type Ia supernovae , 2011, 1102.1354.

[7]  D. Rabinowitz,et al.  NEARBY SUPERNOVA FACTORY OBSERVATIONS OF SN 2007if: FIRST TOTAL MASS MEASUREMENT OF A SUPER-CHANDRASEKHAR-MASS PROGENITOR , 2010, 1003.2217.

[8]  R. Webbink Double white dwarfs as progenitors of R Coronae Borealis stars and type I supernovae , 1984 .

[9]  V. University,et al.  The Ages of Very Cool Hydrogen-rich White Dwarfs , 2000, astro-ph/0007031.

[10]  H. Poincaré,et al.  Les Méthodes nouvelles de la Mécanique céleste and An Introduction to the Study of Stellar Structure , 1958 .

[11]  Stuart A. Sim,et al.  Sub-luminous type Ia supernovae from the mergers of equal-mass white dwarfs with mass ∼0.9M⊙ , 2010, Nature.

[12]  W. Hillebrandt,et al.  Type IA Supernova Explosion Models , 2000 .

[13]  The (54Fe+58Ni)/56Ni ratio as a second parameter for Type Ia supernova properties , 2006, astro-ph/0604032.

[14]  Jacobs University Bremen,et al.  SURFACE DETONATIONS IN DOUBLE DEGENERATE BINARY SYSTEMS TRIGGERED BY ACCRETION STREAM INSTABILITIES , 2009, 0911.0416.

[15]  K. Nomoto Accreting white dwarf models for type 1 supernovae. II - Off-center detonation supernovae , 1982 .

[16]  F. Thielemann,et al.  Three-dimensional hydrodynamical simulations of stellar collisions. II. White dwarfs , 1989 .

[17]  Yoji Kondo,et al.  Conditions for accretion-induced collapse of white dwarfs , 1991 .

[18]  Steven Diehl,et al.  Adaptive binning of X‐ray data with weighted Voronoi tessellations , 2006 .

[19]  S. Woosley,et al.  Sub-Chandrasekhar mass models for Type IA supernovae , 1994 .

[20]  Peter E. Nugent,et al.  The type Ia supernova SNLS-03D3bb from a super-Chandrasekhar-mass white dwarf star , 2006, Nature.

[21]  Michael S. Warren,et al.  SNSPH: A Parallel Three-dimensional Smoothed Particle Radiation Hydrodynamics Code , 2005, astro-ph/0512532.

[22]  F. Timmes,et al.  The Accuracy, Consistency, and Speed of Five Equations of State for Stellar Hydrodynamics , 1999 .

[23]  W. Hillebrandt,et al.  Double-detonation supernovae of sub-Chandrasekhar mass white dwarfs , 2007, 0710.5486.

[24]  S. Justham,et al.  SUB-CHANDRASEKHAR WHITE DWARF MERGERS AS THE PROGENITORS OF TYPE Ia SUPERNOVAE , 2010, 1006.4391.

[25]  J. Whelan,et al.  Binaries and Supernovae of Type I , 1973 .

[26]  Chris L. Fryer,et al.  RATES AND DELAY TIMES OF TYPE Ia SUPERNOVAE , 2009, 0904.3108.

[27]  P. Pinto,et al.  The Physics of Type Ia Supernova Light Curves. I. Analytic Results and Time Dependence , 2000 .

[28]  A. V. Tutukov,et al.  On the evolution of close binaries with components of initial mass between 3 solar masses and 12 solar masses , 1985 .

[29]  M. Phillips,et al.  The Absolute Magnitudes of Type IA Supernovae , 1993 .

[30]  G. Nelemans,et al.  Mass transfer between double white dwarfs , 2003, astro-ph/0312577.

[31]  Enrico Ramirez-Ruiz,et al.  PRELUDE TO A DOUBLE DEGENERATE MERGER: THE ONSET OF MASS TRANSFER AND ITS IMPACT ON GRAVITATIONAL WAVES AND SURFACE DETONATIONS , 2011, 1101.5132.

[32]  G. Chabrier,et al.  The Fate of Merging White Dwarfs , 1997 .

[33]  J. Isern,et al.  Smoothed Particle Hydrodynamics simulations of merging white dwarfs , 2004 .

[34]  K. Nomoto Accreting white dwarf models for type I supernovae. I. Presupernova evolution and triggering mechanisms , 1981 .

[35]  William H. Press,et al.  Dynamic mass exchange in doubly degenerate binaries I , 1990 .

[36]  C. Tao,et al.  A SEARCH FOR NEW CANDIDATE SUPER-CHANDRASEKHAR-MASS TYPE Ia SUPERNOVAE IN THE NEARBY SUPERNOVA FACTORY DATA SET , 2012, 1207.2695.

[37]  Can Differences in the Nickel Abundance in Chandrasekhar-Mass Models Explain the Relation between the Brightness and Decline Rate of Normal Type Ia Supernovae? , 2000, astro-ph/0009490.

[38]  D. Lamb,et al.  INITIATION OF THE DETONATION IN THE GRAVITATIONALLY CONFINED DETONATION MODEL OF TYPE Ia SUPERNOVAE , 2009, 0905.3104.

[39]  I. Hook,et al.  Accepted for publication in The Astrophysical Journal LPNHE 02-02 The distant Type Ia supernova rate , 2002 .

[40]  F. Timmes,et al.  56Ni PRODUCTION IN DOUBLE-DEGENERATE WHITE DWARF COLLISIONS , 2010, 1009.2507.

[41]  A. S. Almgren,et al.  MAESTRO: AN ADAPTIVE LOW MACH NUMBER HYDRODYNAMICS ALGORITHM FOR STELLAR FLOWS , 2010, 1005.0112.

[42]  W. Hillebrandt,et al.  Double-detonation sub-Chandrasekhar supernovae: can minimum helium shell masses detonate the core? , 2010, 1002.2173.

[43]  S. E. Woosley,et al.  The diversity of type Ia supernovae from broken symmetries , 2009, Nature.

[44]  U. Heber,et al.  Tidal Synchronisation Of The Subdwarf B Binary Pg 0101+039 , 2007, 0710.5836.

[45]  A. V. Tutukov,et al.  Supernovae of type I as end products of the evolution of binaries with components of moderate initial mass (M< or approx. =9 M/sub sun/) , 1984 .

[46]  E. Pian,et al.  SPECTROPOLARIMETRY OF EXTREMELY LUMINOUS TYPE Ia SUPERNOVA 2009dc: NEARLY SPHERICAL EXPLOSION OF SUPER-CHANDRASEKHAR MASS WHITE DWARF , 2009, 0908.2057.

[47]  High-resolution smoothed particle hydrodynamics simulations of the merger of binary white dwarfs , 2009 .

[48]  D. Kasen,et al.  COLLISIONS OF WHITE DWARFS AS A NEW PROGENITOR CHANNEL FOR TYPE Ia SUPERNOVAE , 2009, 0907.3196.