Soft Actuator Materials for Electrically Driven Haptic Interfaces

[1]  Zhong Lin Wang,et al.  Mechanoplastic Tribotronic Floating‐Gate Neuromorphic Transistor , 2020, Advanced Functional Materials.

[2]  F. Kremer,et al.  Giant lateral electrostriction in ferroelectric liquid-crystalline elastomers , 2001, Nature.

[3]  R. Verdejo,et al.  Increasing the performance of dielectric elastomer actuators: A review from the materials perspective , 2015 .

[4]  Frank Nüesch,et al.  New Silicone Composites for Dielectric Elastomer Actuator Applications In Competition with Acrylic Foil , 2011 .

[5]  James O. Thostenson,et al.  Ti3C2Tx MXene-Reduced Graphene Oxide Composite Electrodes for Stretchable Supercapacitors. , 2020, ACS nano.

[6]  B. Panchapakesan,et al.  Exfoliated WS2-Nafion Composite based Electromechanical Actuators , 2017, Scientific Reports.

[7]  Xiang Ao,et al.  The Enhancement Effect of Mesoporous Graphene on Actuation of Nafion-Based IPMC , 2016 .

[8]  Q. Pei,et al.  Thermally Stable Silver Nanowire–Polyimide Transparent Electrode Based on Atomic Layer Deposition of Zinc Oxide on Silver Nanowires , 2015 .

[9]  Danica Kragic,et al.  Trends and challenges in robot manipulation , 2019, Science.

[10]  Zhifeng Ren,et al.  Flexible transparent conductors based on metal nanowire networks , 2015 .

[11]  H. Shea,et al.  Flexible and stretchable electrodes for dielectric elastomer actuators , 2012, Applied Physics A.

[12]  M. Warner,et al.  Deformation and rotations of free nematic elastomers in response to electric fields , 2009 .

[13]  Jan-Anders E. Månson,et al.  High Breakdown Field Dielectric Elastomer Actuators Using Encapsulated Polyaniline as High Dielectric Constant Filler , 2010 .

[14]  Yang Yang,et al.  Controllable and reversible tuning of material rigidity for robot applications , 2018, Materials Today.

[15]  Large electromechanical effect of isotropic-genesis polydomain nematic elastomers , 2011 .

[16]  Wenliang Zhang,et al.  Piezotronic Graphene Artificial Sensory Synapse , 2019, Advanced Functional Materials.

[17]  C. Majidi,et al.  A Liquid‐Metal–Elastomer Nanocomposite for Stretchable Dielectric Materials , 2019, Advanced materials.

[18]  A. Skov,et al.  Optimization Techniques for Improving the Performance of Silicone‐Based Dielectric Elastomers , 2018 .

[19]  Ja Choon Koo,et al.  The effects of additives on the actuating performances of a dielectric elastomer actuator , 2008 .

[20]  Carmel Majidi,et al.  Stretchable, High‐k Dielectric Elastomers through Liquid‐Metal Inclusions , 2016, Advanced materials.

[21]  Thomas Gennett,et al.  Single Wall Carbon Nanotube−Nafion Composite Actuators , 2002 .

[22]  Q. Pei,et al.  High-speed electrically actuated elastomers with strain greater than 100% , 2000, Science.

[23]  L. Fadiga,et al.  Precision grasping in humans: from motor control to cognition , 2007, Current Opinion in Neurobiology.

[24]  Yanlei Yu,et al.  Photodeformable Azobenzene‐Containing Liquid Crystal Polymers and Soft Actuators , 2019, Advanced materials.

[25]  Jose Maria Kenny,et al.  Towards materials with enhanced electro-mechanical response: CaCu3Ti4O12-polydimethylsiloxane composites , 2012 .

[26]  Todd A. Gisby,et al.  Self sensing feedback for dielectric elastomer actuators , 2013 .

[27]  Qibing Pei,et al.  A Healable, Semitransparent Silver Nanowire‐Polymer Composite Conductor , 2013, Advanced materials.

[28]  Sabu Thomas,et al.  Development of poly(isobutylene-co-isoprene)/reduced graphene oxide nanocomposites for barrier, dielectric and sensingapplications , 2013 .

[29]  Nicola Pugno,et al.  Multifunctionality and Control of the Crumpling and Unfolding of Large-Area Graphene , 2012, Nature materials.

[30]  Wei Guo,et al.  Matrix-Independent Highly Conductive Composites for Electrodes and Interconnects in Stretchable Electronics. , 2019, ACS applied materials & interfaces.

[31]  S. Javadi,et al.  The effect of organo-clay on the dielectric properties of silicone rubber , 2008 .

[32]  C. Löwe,et al.  Dielectric Elastomers in Actuator Technology , 2005 .

[33]  Ki-Uk Kyung,et al.  A thin film active-lens with translational control for dynamically programmable optical zoom , 2015 .

[34]  Djen T. Kuhnel,et al.  Laser‐Scribed Graphene Oxide Electrodes for Soft Electroactive Devices , 2018, Advanced Materials Technologies.

[35]  Saeed S. Ba Hashwan,et al.  A Review of Actuation and Sensing Mechanisms in MEMS-Based Sensor Devices , 2021, Nanoscale Research Letters.

[36]  C. Majidi Soft‐Matter Engineering for Soft Robotics , 2018, Advanced Materials Technologies.

[37]  Claudio Pacchierotti,et al.  Haptic Feedback for Microrobotics Applications: A Review , 2016, Front. Robot. AI.

[38]  C. E. Chapman,et al.  Role of friction and tangential force variation in the subjective scaling of tactile roughness , 2002, Experimental Brain Research.

[39]  Tongqing Lu,et al.  Dielectric gels with ultra-high dielectric constant, low elastic modulus, and excellent transparency , 2018, NPG Asia Materials.

[40]  Nicholas Kellaris,et al.  Peano-HASEL actuators: Muscle-mimetic, electrohydraulic transducers that linearly contract on activation , 2018, Science Robotics.

[41]  K. Urayama,et al.  Electrically driven deformations of nematic gels. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[42]  F. Xia,et al.  An all-organic composite actuator material with a high dielectric constant , 2002, Nature.

[43]  Young Hee Lee,et al.  Electrical-field effect on carbon nanotubes in a twisted nematic liquid crystal cell , 2005 .

[44]  T. White,et al.  Programmable and adaptive mechanics with liquid crystal polymer networks and elastomers. , 2015, Nature materials.

[45]  H. Shea,et al.  Flexible Active Skin: Large Reconfigurable Arrays of Individually Addressed Shape Memory Polymer Actuators , 2017 .

[46]  Liyun Yu,et al.  Low moduli elastomers with low viscous dissipation , 2012 .

[47]  C. Ye,et al.  Electrothermal Actuators with Ultrafast Response Speed and Large Deformation , 2020, Adv. Intell. Syst..

[48]  C. Davis,et al.  Avian influenza surveillance in domestic waterfowl and environment of live bird markets in Bangladesh, 2007–2012 , 2018, Scientific Reports.

[49]  G. Kofod,et al.  Enhancement Of Dielectric Permittivity And Electromechanical Response In Silicone Elastomers: Molecular Grafting Of Organic Dipoles To The Macromolecular Network , 2011 .

[50]  Alexandre Delalleau,et al.  Characterization of the mechanical properties of skin by inverse analysis combined with the indentation test. , 2006, Journal of biomechanics.

[51]  Kongjun Zhu,et al.  Enhanced Actuation Response of Nafion-Based Ionic Polymer Metal Composites by Doping BaTiO3 Nanoparticles , 2016 .

[52]  M. Sitti,et al.  Monolithic shape-programmable dielectric liquid crystal elastomer actuators , 2019, Science Advances.

[53]  Guggi Kofod,et al.  Synergistic Improvement of Actuation Properties with Compatibilized High Permittivity Filler , 2012 .

[54]  Guggi Kofod,et al.  Molecular composites with enhanced energy density for electroactive polymers , 2010 .

[55]  K. Bertoldi,et al.  Dielectric Elastomer Based “Grippers” for Soft Robotics , 2015, Advanced materials.

[56]  Peter B. Shull,et al.  Haptic wearables as sensory replacement, sensory augmentation and trainer – a review , 2015, Journal of NeuroEngineering and Rehabilitation.

[57]  Zhuo Liu,et al.  Refreshable Braille Display System Based on Triboelectric Nanogenerator and Dielectric Elastomer , 2020, Advanced Functional Materials.

[58]  K. Baek,et al.  Tunable polymer actuators via a simple and versatile blending approach , 2012 .

[59]  Jose M. Moran-Mirabal,et al.  Highly Bendable and Stretchable Electrodes Based on Micro/Nanostructured Gold Films for Flexible Sensors and Electronics , 2016 .

[60]  C. Spillmann,et al.  Electrically Induced Twist in Smectic Liquid-Crystalline Elastomers. , 2008, The journal of physical chemistry. B.

[61]  S. Hashimoto,et al.  Multifunctional liquid crystal elastomers: Large electromechanical and electro-optical effects , 2008 .

[62]  Samuel Shian,et al.  Highly compliant transparent electrodes , 2012 .

[63]  Susan J. Lederman,et al.  Lessons From the Study of Biological Touch for Robotic Tactile Sensing , 1992 .

[64]  M. Shankar,et al.  Thermomechanically active electrodes power work-dense soft actuators. , 2020, Soft matter.

[65]  Zhong Lin Wang,et al.  Bioinspired mechano-photonic artificial synapse based on graphene/MoS2 heterostructure , 2021, Science Advances.

[66]  H. Shea,et al.  High-Resolution, Large-Area Fabrication of Compliant Electrodes via Laser Ablation for Robust, Stretchable Dielectric Elastomer Actuators and Sensors. , 2015, ACS applied materials & interfaces.

[67]  Changyu Shen,et al.  Facile Thermally Impacted Water-Induced Phase Separation Approach for the Fabrication of Skin-Free Thermoplastic Polyurethane Foam and Its Recyclable Counterpart for Oil-Water Separation. , 2018, Macromolecular rapid communications.

[68]  G. Moretti,et al.  Styrenic-Rubber Dielectric Elastomer Actuator with Inherent Stiffness Compensation , 2020, Actuators.

[69]  C. Majidi,et al.  Emergence of Liquid Metals in Nanotechnology. , 2019, ACS nano.

[70]  Gih-Keong Lau,et al.  Dielectric elastomer fingers for versatile grasping and nimble pinching , 2017 .

[71]  Abha Misra,et al.  Carbon Nanotube-Based Hierarchical Paper Structure for Ultra-high Electrothermal Actuation in a Wide Humidity Range , 2021 .

[72]  Ron Pelrine,et al.  Standards for dielectric elastomer transducers , 2015 .

[73]  Carmel Majidi,et al.  A multifunctional shape-morphing elastomer with liquid metal inclusions , 2019, Proceedings of the National Academy of Sciences.

[74]  Haiwen Luan,et al.  Skin-integrated wireless haptic interfaces for virtual and augmented reality , 2019, Nature.

[75]  Jang-Woo Lee,et al.  Preparation and performance of IPMC actuators with electrospun Nafion®–MWNT composite electrodes , 2011 .

[76]  Clive A. Randall,et al.  High field dielectric properties of anisotropic polymer-ceramic composites , 2008 .

[77]  C. Ohm,et al.  Liquid Crystalline Elastomers as Actuators and Sensors , 2010, Advanced materials.

[78]  Xining Zhang,et al.  Actuation Modeling of Ionic–Polymer Metal Composite Actuators Using Micromechanics Approach , 2020, Advanced Engineering Materials.

[79]  Yue Zhao,et al.  Liquid Crystal Polymer‐Based Soft Robots , 2020, Adv. Intell. Syst..

[80]  Federico Capasso,et al.  Adaptive metalenses with simultaneous electrical control of focal length, astigmatism, and shift , 2018, Science Advances.

[81]  N. Kotov,et al.  Stretchable nanoparticle conductors with self-organized conductive pathways , 2013, Nature.

[82]  Robert J. Wood,et al.  Untethered flight of an insect-sized flapping-wing microscale aerial vehicle , 2019, Nature.

[83]  Quang Van Duong,et al.  Audio-Tactile Skinny Buttons for Touch User Interfaces , 2019, Scientific Reports.

[84]  Yang Wang,et al.  Electrically controlled liquid crystal elastomer–based soft tubular actuator with multimodal actuation , 2019, Science Advances.

[85]  D. Leo,et al.  Ionic liquids as stable solvents for ionic polymer transducers , 2004 .

[86]  Neel Doshi,et al.  Controllable water surface to underwater transition through electrowetting in a hybrid terrestrial-aquatic microrobot , 2018, Nature Communications.

[87]  S. Cai,et al.  Reprogrammable, Reprocessible, and Self-Healable Liquid Crystal Elastomer with Exchangeable Disulfide Bonds. , 2017, ACS applied materials & interfaces.

[88]  A. Bhardwaj,et al.  In situ click chemistry generation of cyclooxygenase-2 inhibitors , 2017, Nature Communications.

[89]  K. Asaka,et al.  Improved performance of an activated multi-walled carbon nanotube polymer actuator, compared with a single-walled carbon nanotube polymer actuator , 2012 .

[90]  Ankit,et al.  High-k, Ultrastretchable Self-Enclosed Ionic Liquid-Elastomer Composites for Soft Robotics and Flexible Electronics. , 2020, ACS applied materials & interfaces.

[91]  Federico Carpi,et al.  Perspectives for new dielectric elastomers with improved electromechanical actuation performance: composites versus blends , 2010 .

[92]  Samuel Rosset,et al.  Self-sensing dielectric elastomer actuators in closed-loop operation , 2013 .

[93]  Ankit,et al.  Directed Assembly of Liquid Metal–Elastomer Conductors for Stretchable and Self‐Healing Electronics , 2020, Advanced materials.

[94]  Maria Chiara Carrozza,et al.  Haptic-assistive technologies for audition and vision sensory disabilities , 2018, Disability and rehabilitation. Assistive technology.

[95]  Zhen Gu,et al.  Transformable liquid-metal nanomedicine , 2015, Nature Communications.

[96]  Hongbo Zeng,et al.  Recent advances in designing conductive hydrogels for flexible electronics , 2020 .

[97]  Xiufeng Yang,et al.  An 88-milligram insect-scale autonomous crawling robot driven by a catalytic artificial muscle , 2020, Science Robotics.

[98]  Frank Nüesch,et al.  Self‐Repairable, High Permittivity Dielectric Elastomers with Large Actuation Strains at Low Electric Fields , 2015 .

[99]  Taylor H. Ware,et al.  Liquid crystal elastomer actuators: Synthesis, alignment, and applications , 2017 .

[100]  N. Kamamichi,et al.  IPMCs as EAPs: Applications , 2016 .

[101]  C. Keplinger,et al.  A highly stretchable autonomous self-healing elastomer. , 2016, Nature chemistry.

[102]  Tushar K. Ghosh,et al.  Electroactive Nanostructured Polymers as Tunable Actuators , 2007 .

[103]  Jang-Woo Lee,et al.  High-strain air-working soft transducers produced from nanostructured block copolymer ionomer/silicate/ionic liquid nanocomposite membranes , 2013 .

[104]  M. Sitti,et al.  Soft Actuators for Small‐Scale Robotics , 2017, Advanced materials.

[105]  M. Dickey Stretchable and Soft Electronics using Liquid Metals , 2017, Advanced materials.

[106]  Il-Kwon Oh,et al.  MXene artificial muscles based on ionically cross-linked Ti3C2Tx electrode for kinetic soft robotics , 2019, Science Robotics.

[107]  G. Debrégeas,et al.  The Role of Fingerprints in the Coding of Tactile Information Probed with a Biomimetic Sensor , 2009, Science.

[108]  Namhun Kim,et al.  Multistable Thermal Actuators Via Multimaterial 4D Printing , 2018, Advanced Materials Technologies.

[109]  Leonid L. Chepelev,et al.  Applying Modern Virtual and Augmented Reality Technologies to Medical Images and Models , 2018, Journal of Digital Imaging.

[110]  Q. Pei,et al.  Recent Advances in Stretchable and Transparent Electronic Materials , 2016 .

[111]  W. Yim,et al.  Mechanical, dielectric, and magnetic properties of the silicone elastomer with multi‐walled carbon nanotubes as a nanofiller , 2007 .

[112]  M. Ilcikova,et al.  Effect of Surfactants and Manufacturing Methods on the Electrical and Thermal Conductivity of Carbon Nanotube/Silicone Composites , 2012, Molecules.

[113]  Ankit,et al.  Self healable neuromorphic memtransistor elements for decentralized sensory signal processing in robotics , 2020, Nature Communications.

[114]  W. Yuan,et al.  Fault‐Tolerant Dielectric Elastomer Actuators using Single‐Walled Carbon Nanotube Electrodes , 2008 .

[115]  J. Muth,et al.  3D Printing of Free Standing Liquid Metal Microstructures , 2013, Advanced materials.

[116]  Hanne M. van der Kooij,et al.  Electroplasticization of Liquid Crystal Polymer Networks , 2020, ACS applied materials & interfaces.

[117]  Ayse Aytac,et al.  Properties of thermally conductive micro and nano size boron nitride reinforced silicon rubber composites , 2010 .

[118]  Dario Floreano,et al.  Stretchable pumps for soft machines , 2019, Nature.

[119]  Z. Suo,et al.  Hydrogel ionotronics , 2018, Nature Reviews Materials.

[120]  Shiping Zhu,et al.  Improving Dielectric Constant of Polymers through Liquid Electrolyte Inclusion , 2020, Advanced Functional Materials.

[121]  D. Floreano,et al.  Variable Stiffness Fiber with Self‐Healing Capability , 2016, Advanced materials.

[122]  K. Urayama,et al.  Deformation Coupled to Director Rotation in Swollen Nematic Elastomers under Electric Fields , 2006 .

[123]  S. Akbari,et al.  Electrically-Induced Actuation of Acrylic-Based Dielectric Elastomers in Excess of 500% Strain. , 2018, Soft robotics.

[124]  T. Ghosh,et al.  Dielectric elastomers as next-generation polymeric actuators. , 2007, Soft matter.

[125]  M. Urban,et al.  Self-healing polymers , 2020, Nature Reviews Materials.

[126]  M. Srinivasan,et al.  Tactile discrimination of shape: responses of rapidly adapting mechanoreceptive afferents to a step stroked across the monkey fingerpad , 1987, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[127]  P. Ajayan,et al.  Electromechanically Responsive Liquid Crystal Elastomer Nanocomposites for Active Cell Culture. , 2016, ACS macro letters.

[128]  M. Srinivasan,et al.  Encoding of shape and orientation of objects indented into the monkey fingerpad by populations of slowly and rapidly adapting mechanoreceptors. , 1998, Journal of neurophysiology.

[129]  B. Berglund,et al.  Feeling Small: Exploring the Tactile Perception Limits , 2013, Scientific Reports.

[130]  Qibing Pei,et al.  Dielectric Elastomer Artificial Muscle: Materials Innovations and Device Explorations. , 2019, Accounts of chemical research.

[131]  D. De Rossi,et al.  Silicone–Poly(hexylthiophene) Blends as Elastomers with Enhanced Electromechanical Transduction Properties , 2008 .

[132]  K. Zilles,et al.  t Object Shape Differences Reflected by Somatosensory Cortical Activation , 2000, The Journal of Neuroscience.

[133]  S. Hvilsted,et al.  Green silicone elastomer obtained from a counterintuitively stable mixture of glycerol and PDMS , 2016 .

[134]  Rajesh Aggarwal,et al.  Short‐phase training on a virtual reality simulator improves technical performance in tele‐robotic surgery , 2008, The international journal of medical robotics + computer assisted surgery : MRCAS.

[135]  Yang Shen,et al.  Carbon Nanotube Array/Polymer Core/Shell Structured Composites with High Dielectric Permittivity, Low Dielectric Loss, and Large Energy Density , 2011, Advanced materials.

[136]  Guo-Hua Feng,et al.  Investigation of tactile bump array actuated with ionic polymer–metal composite cantilever beams for refreshable braille display application , 2018, Sensors and Actuators A: Physical.

[137]  Yi Cui,et al.  Solution-processed metal nanowire mesh transparent electrodes. , 2008, Nano letters.

[138]  A. M. Smith,et al.  Friction, not texture, dictates grip forces used during object manipulation. , 1996, Journal of neurophysiology.

[139]  Ankit,et al.  Highly Transparent and Integrable Surface Texture Change Device for Localized Tactile Feedback. , 2018, Small.

[140]  K. Naskar,et al.  Dielectric relaxation behavior of conducting carbon black reinforced ethylene acrylic elastomer vulcanizates , 2012 .

[141]  Ron Pelrine,et al.  Interpenetrating Polymer Networks for High‐Performance Electroelastomer Artificial Muscles , 2006 .

[142]  Guggi Kofod,et al.  Broad-spectrum enhancement of polymer composite dielectric constant at ultralow volume fractions of silica-supported copper nanoparticles. , 2011, ACS nano.

[143]  L. Kempel,et al.  Controlled synthesis of core–shell iron–silica nanoparticles and their magneto-dielectric properties in polymer composites , 2011, Nanotechnology.

[144]  Qibing Pei,et al.  Synthesizing a new dielectric elastomer exhibiting large actuation strain and suppressed electromechanical instability without prestretching , 2013 .

[145]  Alexandre Poulin,et al.  Flexible Zinc–Tin Oxide Thin Film Transistors Operating at 1 kV for Integrated Switching of Dielectric Elastomer Actuators Arrays , 2017, Advanced materials.

[146]  Jiaqi Liu,et al.  Shaping and Locomotion of Soft Robots Using Filament Actuators Made from Liquid Crystal Elastomer–Carbon Nanotube Composites , 2020, Adv. Intell. Syst..

[147]  Yi Cui,et al.  Scalable coating and properties of transparent, flexible, silver nanowire electrodes. , 2010, ACS nano.

[148]  D. Floreano,et al.  Lighter and Stronger: Cofabricated Electrodes and Variable Stiffness Elements in Dielectric Actuators , 2020, Adv. Intell. Syst..

[149]  Hongmiao Tian,et al.  An Electrically Actuated Soft Artificial Muscle Based on a High-Performance Flexible Electrothermal Film and Liquid-Crystal Elastomer. , 2020, ACS applied materials & interfaces.

[150]  Qibing Pei,et al.  Long lifetime, fault-tolerant freestanding actuators based on a silicone dielectric elastomer and self-clearing carbon nanotube compliant electrodes , 2013 .

[151]  P. Naumov,et al.  Performance of molecular crystals in conversion of light to mechanical work , 2021, Proceedings of the National Academy of Sciences.

[152]  Zhibin Yu,et al.  Compliant Silver Nanowire‐Polymer Composite Electrodes for Bistable Large Strain Actuation , 2012, Advanced materials.

[153]  Zhong Lin Wang,et al.  Contact-electrification-activated artificial afferents at femtojoule energy , 2021, Nature Communications.

[154]  Z. Suo,et al.  Highly stretchable and tough hydrogels , 2012, Nature.

[155]  M. Montemor,et al.  Metal Oxide and Hydroxide–Based Aqueous Supercapacitors: From Charge Storage Mechanisms and Functional Electrode Engineering to Need‐Tailored Devices , 2019, Advanced science.

[156]  Zhigang Suo,et al.  Highly stretchable and transparent ionogels as nonvolatile conductors for dielectric elastomer transducers. , 2014, ACS applied materials & interfaces.

[157]  R. Vaia,et al.  Electrical Control of Shape in Voxelated Liquid Crystalline Polymer Nanocomposites. , 2018, ACS applied materials & interfaces.

[158]  Choon Chiang Foo,et al.  Stretchable, Transparent, Ionic Conductors , 2013, Science.

[159]  Ingvars Birznieks,et al.  Influence of object shape on responses of human tactile afferents under conditions characteristic of manipulation , 2003, The European journal of neuroscience.

[160]  Chunyan Luo,et al.  Highly Stretchable, Fatigue Resistant, Electrically Conductive and Temperature Tolerant Ionogels for High-performance Flexible Sensors. , 2019, ACS applied materials & interfaces.

[161]  Arno Thielens,et al.  A New Frontier of Printed Electronics: Flexible Hybrid Electronics , 2019, Advanced materials.

[162]  J. Lewis,et al.  3D Printing of Interdigitated Dielectric Elastomer Actuators , 2019, Advanced Functional Materials.

[163]  M. Cazacu,et al.  Synthesis and characterization of silicones containing cyanopropyl groups and their use in dielectric elastomer actuators , 2013 .

[164]  Tao Jiang,et al.  Tunable Optical Modulator by Coupling a Triboelectric Nanogenerator and a Dielectric Elastomer , 2017 .

[165]  P. Joy,et al.  On the magnetic and dielectric properties of nickel–neoprene nanocomposites , 2010 .

[166]  Zhigang Suo,et al.  Ionic skin , 2014, Advanced materials.

[167]  J C Craig,et al.  Temporal factors in tactile spatial acuity: evidence for RA interference in fine spatial processing. , 2006, Journal of neurophysiology.

[168]  M. Dickey,et al.  Attributes, Fabrication, and Applications of Gallium‐Based Liquid Metal Particles , 2020, Advanced science.

[169]  Zhenan Bao,et al.  Stretchable organic optoelectronic sensorimotor synapse , 2018, Science Advances.

[170]  F. B. Madsen,et al.  Silicone elastomers with high dielectric permittivity and high dielectric breakdown strength based on dipolar copolymers , 2014 .

[171]  H. Shea,et al.  High-speed mechano-active multielectrode array for investigating rapid stretch effects on cardiac tissue , 2019, Nature Communications.

[172]  H. Finkelmann,et al.  Investigations on liquid crystalline polysiloxanes 3. Liquid crystalline elastomers — a new type of liquid crystalline material , 1981 .

[173]  Alon A Gorodetsky,et al.  Adaptive infrared-reflecting systems inspired by cephalopods , 2018, Science.

[174]  Seyed M. Mirvakili,et al.  Artificial Muscles: Mechanisms, Applications, and Challenges , 2018, Advanced materials.

[175]  Hongrui Jiang,et al.  Actuators based on liquid crystalline elastomer materials. , 2013, Nanoscale.

[176]  T. Nishi,et al.  Large increase in actuated strain of HNBR dielectric elastomer by controlling molecular interaction and dielectric filler network , 2013 .

[177]  J. Craig,et al.  Factors affecting tactile spatial acuity. , 1998, Somatosensory & motor research.

[178]  J. Randall Flanagan,et al.  Coding and use of tactile signals from the fingertips in object manipulation tasks , 2009, Nature Reviews Neuroscience.

[179]  Wei Chen,et al.  Biocompatible Composite Actuator: A Supramolecular Structure Consisting of the Biopolymer Chitosan, Carbon Nanotubes, and an Ionic Liquid , 2010, Advanced materials.

[180]  Jang-Woo Lee,et al.  High-performance polymer ionomer–ionic liquid membrane IPMC actuator , 2013, Research on Chemical Intermediates.

[181]  D. Rus,et al.  Design, fabrication and control of soft robots , 2015, Nature.

[182]  G. Kofod,et al.  A versatile method for enhancement of electromechanical sensitivity of silicone elastomers , 2012 .

[183]  Do Hwan Kim,et al.  Design of Wavy Ag Microwire Array for Mechanically Stable, Multimodal Vibrational Haptic Interface , 2019, Advanced Functional Materials.

[184]  D. Opris,et al.  Polar Elastomers as Novel Materials for Electromechanical Actuator Applications , 2018, Advanced materials.

[185]  S. Bauer,et al.  Energy minimization for self-organized structure formation and actuation , 2007 .

[186]  Paolo Dario,et al.  A slip sensor for biorobotic applications using a hot wire anemometry approach , 2012 .

[187]  P. Charbonneau,et al.  The effect of nanowire length and diameter on the properties of transparent, conducting nanowire films. , 2012, Nanoscale.

[188]  Ravi R. Patel,et al.  Liquid crystal elastomers: an introduction and review of emerging technologies , 2018 .

[189]  Kinji Asaka,et al.  Recent advances in ionic polymer–metal composite actuators and their modeling and applications , 2013 .

[190]  Il-Kwon Oh,et al.  An Electroactive and Transparent Haptic Interface Utilizing Soft Elastomer Actuators with Silver Nanowire Electrodes. , 2018, Small.

[191]  J. O. Simpson,et al.  Ionic polymer-metal composites (IPMCs) as biomimetic sensors, actuators and artificial muscles - a review , 1998 .

[192]  Shane K. Mitchell,et al.  Hydraulically amplified self-healing electrostatic actuators with muscle-like performance , 2018, Science.

[193]  Carmel Majidi,et al.  An autonomously electrically self-healing liquid metal–elastomer composite for robust soft-matter robotics and electronics , 2018, Nature Materials.

[194]  H. Shea,et al.  Multimode Hydraulically Amplified Electrostatic Actuators for Wearable Haptics , 2020, Advanced materials.

[195]  Ja Choon Koo,et al.  Tactile display with rigid coupling based on soft actuator , 2015 .

[196]  Y. Visell,et al.  Emerging Material Technologies for Haptics , 2019, Advanced Materials Technologies.

[197]  F. Carpi,et al.  A Soft Touch: Wearable Tactile Display of Softness Made of Electroactive Elastomers , 2021, Advanced Materials Technologies.

[198]  Christoph Keplinger,et al.  Dynamics of electrohydraulic soft actuators , 2020, Proceedings of the National Academy of Sciences.

[199]  P. Delmas,et al.  Molecular mechanisms of mechanotransduction in mammalian sensory neurons , 2011, Nature Reviews Neuroscience.

[200]  Q. Pei,et al.  Refreshable Tactile Display Based on a Bistable Electroactive Polymer and a Stretchable Serpentine Joule Heating Electrode. , 2018, ACS applied materials & interfaces.

[201]  Andrey V. Dobrynin,et al.  Bottlebrush Elastomers: A New Platform for Freestanding Electroactuation , 2017, Advanced materials.

[202]  Levente Tamas,et al.  Augmented reality integration into MES for connected workers , 2021, Robotics Comput. Integr. Manuf..

[203]  Mark A. Skylar-Scott,et al.  Voxelated soft matter via multimaterial multinozzle 3D printing , 2019, Nature.

[204]  K. Urayama,et al.  Electrical Actuation of Cholesteric Liquid Crystal Gels. , 2014, ACS macro letters.

[205]  Q. Pei,et al.  Stable and High‐Strain Dielectric Elastomer Actuators Based on a Carbon Nanotube‐Polymer Bilayer Electrode , 2020, Advanced Functional Materials.

[206]  Q. Pei,et al.  An aluminum nanoparticle–acrylate copolymer nanocomposite as a dielectric elastomer with a high dielectric constant , 2014 .

[207]  Mihai Duduta,et al.  Multilayer Dielectric Elastomers for Fast, Programmable Actuation without Prestretch , 2016, Advanced materials.

[208]  G. Whitesides Soft Robotics. , 2018, Angewandte Chemie.

[209]  Jinzhu Li,et al.  Superfast-response and ultrahigh-power-density electromechanical actuators based on hierarchal carbon nanotube electrodes and chitosan. , 2011, Nano letters.