Cellulosic biofuels can be used to replace traditional liquid transportation fuels. Cellulosic biomass is feedstock in manufacturing of cellulosic biofuels. However, the low density of cellulosic biomass feedstock hinders large-scale and cost-effective manufacturing of cellulosic biofuels. Another bottleneck factor in manufacturing of cellulosic biofuels is the low efficiency of the enzymatic hydrolysis of cellulosic biomass materials resulting in a low sugar yield. Ultrasonic vibration-assisted (UV-A) pelleting can increase the density of cellulosic biomass feedstocks via combined effects of mechanical compression and ultrasonic vibration of the tool on the cellulosic biomass. Meanwhile ultrasonic vibration may act as a beneficial pretreatment for enzymatic hydrolysis, which can possibly increase the efficiency of hydrolysis and obtain a higher sugar yield. The pressure and the ultrasonic power are important parameters in UV-A pelleting. Their effects on pellet quality (density, durability, and stability) and sugar yield (after hydrolysis) are experimentally investigated.Copyright © 2010 by ASME