Solvent Induced Inversion of Core-Shell Microgels.

The morphology of core–shell microgels under different swelling conditions and as a function of the core–shell thickness ratio is systematically characterized by mesoscale hydrodynamic simulations. With increasing hydrophobic interaction of the shell polymers, we observe drastic morphological changes from a core–shell structure to an inverted microgel, where the core is turned to the outside, or a microgel with a patchy surface of core polymers directly exposed to the environment. We establish a phase diagram of the various morphologies. Moreover, we characterize the polymer and microgel conformations. For sufficiently thick shells, the changes of the shell size upon increasing hydrophobic interactions are well described by the Flory–Rehner theory. Additionally, this theory provides a critical line in the phase diagram separating core–shell structures from the distinct two other phases. The appearing new phases provide a novel route to nano- and microscale functionalized materials.

[1]  S. Lifson,et al.  Equation of swelling for polyelectrolyte gels , 1951 .

[2]  Kurt Kremer,et al.  Scaling in polyelectrolyte networks , 2004 .

[3]  A. Malevanets,et al.  Mesoscopic model for solvent dynamics , 1999 .

[4]  R. Winkler,et al.  Polymer Conformations in Ionic Microgels in the Presence of Salt: Theoretical and Mesoscale Simulation Results , 2017, Polymers.

[5]  J. S. Pedersen,et al.  Multi-Shell Hollow Nanogels with Responsive Shell Permeability , 2016, Scientific Reports.

[6]  J. F. Ryder,et al.  Shear thinning in dilute polymer solutions. , 2006, The Journal of chemical physics.

[7]  M. Quesada-Pérez,et al.  Temperature-sensitive nanogels in the presence of salt: explicit coarse-grained simulations. , 2014, The Journal of chemical physics.

[8]  T. Hellweg,et al.  Responsive P(NIPAM-co-NtBAM) microgels: Flory–Rehner description of the swelling behaviour , 2010 .

[9]  R. Hentschke,et al.  Computer simulation study on the swelling of a polyelectrolyte gel by a Stockmayer solvent. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[10]  R. Winkler,et al.  Structure of Microgels with Debye–Hückel Interactions , 2014 .

[11]  Nancy R. Sottos,et al.  Triggered Release from Polymer Capsules , 2011 .

[12]  Gerhard Gompper,et al.  Semidilute solutions of ultra-soft colloids under shear flow , 2012 .

[13]  M. C. Stuart,et al.  Emerging applications of stimuli-responsive polymer materials. , 2010, Nature materials.

[14]  R. Winkler,et al.  Universal conformational properties of polymers in ionic nanogels , 2016, Scientific Reports.

[15]  Peter Lindner,et al.  Cononsolvency Effects on the Structure and Dynamics of Microgels , 2014 .

[16]  Gerhard Gompper,et al.  Hydrodynamic correlations and diffusion coefficient of star polymers in solution. , 2014, The Journal of chemical physics.

[17]  W. H. Blackburn,et al.  Size-controlled synthesis of monodisperse core/shell nanogels , 2008, Colloid and polymer science.

[18]  Y. Bae,et al.  A cosolvency effect on tunable thermosensitive core-shell nanoparticle gels. , 2015, Soft matter.

[19]  M. Ballauff,et al.  Enhanced activity of enzymes immobilized in thermoresponsive core-shell microgels. , 2009, The journal of physical chemistry. B.

[20]  M. Quesada-Pérez,et al.  Computer simulations of thermo-sensitive microgels: quantitative comparison with experimental swelling data. , 2012, The Journal of chemical physics.

[21]  R. Kapral Multiparticle Collision Dynamics: Simulation of Complex Systems on Mesoscales , 2008 .

[22]  M. Ciamarra,et al.  Elasticity of compressed microgel suspensions , 2013, 1305.3520.

[23]  Flow-induced helical coiling of semiflexible polymers in structured microchannels. , 2012, Physical review letters.

[24]  D. Demco,et al.  Correlated Morphological Changes in the Volume Temperature Transition of Core–Shell Microgels , 2013 .

[25]  Yan Lu,et al.  Thermosensitive core–shell microgels: From colloidal model systems to nanoreactors , 2011 .

[26]  A. Fernández-Nieves,et al.  Structural modifications in the swelling of inhomogeneous microgels by light and neutron scattering. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[27]  Yongjun Zhang,et al.  Thermally induced phase transition of glucose-sensitive core-shell microgels. , 2010, ACS applied materials & interfaces.

[28]  Arash Nikoubashman,et al.  Flow-induced polymer translocation through narrow and patterned channels. , 2010, The Journal of chemical physics.

[29]  E. Dufresne,et al.  Mechanical properties of individual microgel particles through the deswelling transition , 2009 .

[30]  Gerhard Gompper,et al.  Semidilute Polymer Solutions at Equilibrium and under Shear Flow , 2010, 1103.3573.

[31]  T. Richter,et al.  Modeling of Polyelectrolyte Gels in Equilibrium with Salt Solutions , 2015 .

[32]  J. Pablo,et al.  Study of volume phase transitions in polymeric nanogels by theoretically informed coarse-grained simulations , 2011 .

[33]  U. Gasser,et al.  Deswelling Microgel Particles Using Hydrostatic Pressure , 2009 .

[34]  H. Bysell,et al.  Microgels and microcapsules in peptide and protein drug delivery. , 2011, Advanced drug delivery reviews.

[35]  R. Winkler,et al.  Dynamics of polymers in a particle-based mesoscopic solvent. , 2005, The Journal of chemical physics.

[36]  Walter Richtering,et al.  Cononsolvency of Poly(N,N-diethylacrylamide) (PDEAAM) and Poly(N-isopropylacrylamide) (PNIPAM) Based Microgels in Water/Methanol Mixtures: Copolymer vs Core-Shell Microgel , 2010 .

[37]  R. Winkler,et al.  Star polymers in shear flow. , 2006, Physical review letters.

[38]  Roland G. Winkler,et al.  Polyelectrolyte electrophoresis: Field effects and hydrodynamic interactions , 2008 .

[39]  R. Winkler,et al.  Multi-Particle Collision Dynamics -- a Particle-Based Mesoscale Simulation Approach to the Hydrodynamics of Complex Fluids , 2008, 0808.2157.

[40]  R. Winkler,et al.  Dynamic Structure Factor of Core–Shell Microgels: A Neutron Scattering and Mesoscale Hydrodynamic Simulation Study , 2016 .

[41]  C. Elvingson,et al.  Collapse Dynamics of Core–Shell Nanogels , 2016 .

[42]  R. Winkler,et al.  Dynamical and rheological properties of soft colloid suspensions , 2014 .

[43]  T. Richter,et al.  Molecular Simulations of Hydrogels , 2013 .

[44]  Manuel Quesada-Pérez,et al.  Gel swelling theories: the classical formalism and recent approaches , 2011 .

[45]  Ingo Berndt Dipl.-Chem.,et al.  Temperature-Sensitive Core–Shell Microgel Particles with Dense Shell† , 2006 .

[46]  W. H. Blackburn,et al.  Chemosensitization of cancer cells by siRNA using targeted nanogel delivery , 2010, BMC Cancer.

[47]  W. Richtering,et al.  Electrostatic Interactions and Osmotic Pressure of Counterions Control the pH-Dependent Swelling and Collapse of Polyampholyte Microgels with Random Distribution of Ionizable Groups , 2015 .

[48]  Ingo Berndt,et al.  Structure of multiresponsive "intelligent" core-shell microgels. , 2005, Journal of the American Chemical Society.

[49]  R. Winkler,et al.  Internal dynamics of microgels: A mesoscale hydrodynamic simulation study. , 2016, The Journal of chemical physics.

[50]  P. Linse,et al.  Monte Carlo Simulation of Defect-Free Cross-Linked Polyelectrolyte Gels † , 2003 .

[51]  Matthias Karg,et al.  A versatile approach for the preparation of thermosensitive PNIPAM core-shell microgels with nanoparticle cores. , 2006, Chemphyschem : a European journal of chemical physics and physical chemistry.

[52]  R. Winkler,et al.  Effect of hydrodynamic correlations on the dynamics of polymers in dilute solution. , 2013, The Journal of chemical physics.

[53]  P. Flory,et al.  Statistical Mechanics of Cross‐Linked Polymer Networks I. Rubberlike Elasticity , 1943 .

[54]  Gil C. Claudio,et al.  Comparison of a hydrogel model to the Poisson-Boltzmann cell model. , 2009, The Journal of chemical physics.

[55]  W. Richtering,et al.  The special behaviours of responsive core–shell nanogels , 2012 .