Architectures and accuracy of artificial neural network for disease classification from omics data

[1]  Kurt Hornik,et al.  Misc Functions of the Department of Statistics, Probability Theory Group (Formerly: E1071), TU Wien [R package e1071 version 1.7-4] , 2020 .

[2]  Zhen Zhang,et al.  OmicsMapNet: Transforming omics data to take advantage of Deep Convolutional Neural Network for discovery , 2018, ArXiv.

[3]  Xun Zhu,et al.  Cox-nnet: An artificial neural network method for prognosis prediction of high-throughput omics data , 2018, PLoS Comput. Biol..

[4]  Cesare Furlanello,et al.  Convolutional neural networks for structured omics: OmicsCNN and the OmicsConv layer , 2017, 1710.05918.

[5]  Cesare Furlanello,et al.  Phylogenetic convolutional neural networks in metagenomics , 2017, BMC Bioinformatics.

[6]  Benjamin Recht,et al.  Convolutional Kitchen Sinks for Transcription Factor Binding Site Prediction , 2017, 1706.00125.

[7]  Xiaolin Li,et al.  DeepCancer: Detecting Cancer via Deep Generative Learning Through Gene Expressions , 2016, 2017 IEEE 15th Intl Conf on Dependable, Autonomic and Secure Computing, 15th Intl Conf on Pervasive Intelligence and Computing, 3rd Intl Conf on Big Data Intelligence and Computing and Cyber Science and Technology Congress(DASC/PiCom/DataCom/CyberSciTech).

[8]  Christopher Joseph Pal,et al.  A simple squared-error reformulation for ordinal classification , 2016, ArXiv.

[9]  May D. Wang,et al.  DeeperBind: Enhancing Prediction of Sequence Specificities of DNA Binding Proteins , 2016, bioRxiv.

[10]  Jimeng Sun,et al.  Using recurrent neural network models for early detection of heart failure onset , 2016, J. Am. Medical Informatics Assoc..

[11]  Svetha Venkatesh,et al.  $\mathtt {Deepr}$: A Convolutional Net for Medical Records , 2016, IEEE Journal of Biomedical and Health Informatics.

[12]  David K. Gifford,et al.  Convolutional neural network architectures for predicting DNA–protein binding , 2016, Bioinform..

[13]  Li Li,et al.  Deep Patient: An Unsupervised Representation to Predict the Future of Patients from the Electronic Health Records , 2016, Scientific Reports.

[14]  Byunghan Lee,et al.  Deep learning in bioinformatics , 2016, Briefings Bioinform..

[15]  Genevera I. Allen,et al.  TCGA2STAT: simple TCGA data access for integrated statistical analysis in R , 2016, Bioinform..

[16]  Yanjun Qi,et al.  Deep Motif: Visualizing Genomic Sequence Classifications , 2016, ArXiv.

[17]  Liang Li,et al.  Sample normalization methods in quantitative metabolomics. , 2016, Journal of chromatography. A.

[18]  Gregory Ditzler,et al.  Multi-Layer and Recursive Neural Networks for Metagenomic Classification , 2015, IEEE Transactions on NanoBioscience.

[19]  B. Frey,et al.  Predicting the sequence specificities of DNA- and RNA-binding proteins by deep learning , 2015, Nature Biotechnology.

[20]  Geoffrey E. Hinton,et al.  Deep Learning , 2015, Nature.

[21]  Svetha Venkatesh,et al.  Learning vector representation of medical objects via EMR-driven nonnegative restricted Boltzmann machines (eNRBM) , 2015, J. Biomed. Informatics.

[22]  William N. Venables,et al.  Modern Applied Statistics with S , 2010 .

[23]  Kevin C. Dorff,et al.  The MicroArray Quality Control (MAQC)-II study of common practices for the development and validation of microarray-based predictive models , 2010, Nature Biotechnology.

[24]  Geoffrey E. Hinton,et al.  Rectified Linear Units Improve Restricted Boltzmann Machines , 2010, ICML.

[25]  Christophe Lemetre,et al.  An introduction to artificial neural networks in bioinformatics - application to complex microarray and mass spectrometry datasets in cancer studies , 2008, Briefings Bioinform..

[26]  Nasser M. Nasrabadi,et al.  Pattern Recognition and Machine Learning , 2006, Technometrics.

[27]  Ed Keedwell,et al.  Single-layer artificial neural networks for gene expression analysis , 2004, Neurocomputing.

[28]  Noam Harpaz,et al.  Artificial neural networks distinguish among subtypes of neoplastic colorectal lesions. , 2002, Gastroenterology.

[29]  M. Ringnér,et al.  Classification and diagnostic prediction of cancers using gene expression profiling and artificial neural networks , 2001, Nature Medicine.

[30]  Corinna Cortes,et al.  Support-Vector Networks , 1995, Machine Learning.

[31]  Kurt Hornik,et al.  Approximation capabilities of multilayer feedforward networks , 1991, Neural Networks.

[32]  George Cybenko,et al.  Approximation by superpositions of a sigmoidal function , 1989, Math. Control. Signals Syst..

[33]  Jacob Cohen A Coefficient of Agreement for Nominal Scales , 1960 .

[34]  Guigang Zhang,et al.  Deep Learning , 2016, Int. J. Semantic Comput..

[35]  Nitish Srivastava,et al.  Dropout: a simple way to prevent neural networks from overfitting , 2014, J. Mach. Learn. Res..

[36]  Rasool Fakoor,et al.  Using deep learning to enhance cancer diagnosis and classication , 2013 .

[37]  Maqc Consortium The MicroArray Quality Control ( MAQC )-II study of common practices for the development and validation of microarray-based predictive models , 2012 .

[38]  Andy Liaw,et al.  Classification and Regression by randomForest , 2007 .

[39]  Musa H. Asyali,et al.  Gene Expression Profile Classification: A Review , 2006 .

[40]  Claus Weihs,et al.  klaR Analyzing German Business Cycles , 2005, Data Analysis and Decision Support.

[41]  R. Tibshirani Regression Shrinkage and Selection via the Lasso , 1996 .