Lp compression, traveling salesmen, and stable walks

We show that if H is a group of polynomial growth whose growth rate is at least quadratic then the Lp compression of the wreath product Z oH equals max { 1 p , 1 2 } . We also show that the Lp compression of Z oZ equals max { p 2p−1 , 2 3 } and the Lp compression of (Z oZ)0 (the zero section of Z oZ, equipped with the metric induced from Z o Z) equals max { p+1 2p , 3 4 } . The fact that the Hilbert compression exponent of Z o Z equals 3 while the Hilbert compression exponent of (Z o Z)0 equals 3 4 is used to show that there exists a Lipschitz function f : (Z o Z)0 → L2 which cannot be extended to a Lipschitz function defined on all of Z o Z.

[1]  Assaf Naor,et al.  The Euclidean Distortion of the Lamplighter Group , 2007, Discret. Comput. Geom..

[2]  A finitely-generated amenable group with very poor compression into Lebesgue spaces , 2009, 0909.2047.

[3]  Compression bounds for wreath products , 2009, 0907.5017.

[4]  Yves Cornulier,et al.  PROPER ACTIONS OF WREATH PRODUCTS AND GENERALIZATIONS , 2009, 0905.3960.

[5]  Y. Peres,et al.  Embeddings of Discrete Groups and the Speed of Random Walks , 2007, 0708.0853.

[6]  A. Valette,et al.  Proper actions of lamplighter groups associated with free groups , 2007, 0707.2039.

[7]  The wreath product of Z with Z has Hilbert compression exponent 2/3 , 2007 .

[8]  Y. Peres,et al.  The wreath product of $\mathbb {Z}$ with $\mathbb {Z}$ has Hilbert compression exponent $\frac {2}{3}$ , 2007, 0706.1943.

[9]  A. Valette,et al.  Isometric Group Actions on Hilbert Spaces: Growth of Cocycles , 2005, math/0509527.

[10]  J. K. Hunter,et al.  Measure Theory , 2007 .

[11]  Goulnara Arzhantseva,et al.  Compression functions of uniform embeddings of groups into Hilbert and Banach spaces , 2006 .

[12]  J. Cheeger,et al.  Differentiating maps into L1, and the geometry of BV functions , 2006, math/0611954.

[13]  S. Gal Asymptotic dimension and uniform embeddings , 2006, math/0607376.

[14]  A. Valette,et al.  Wreath products with the integers, proper actions and Hilbert space compression , 2006, math/0603479.

[15]  R. Tessera Asymptotic isoperimetry on groups and uniform embeddings into Banach spaces , 2006, math/0603138.

[16]  N. Brodskiy,et al.  Compression of uniform embeddings into Hilbert space , 2005, math/0509108.

[17]  M. Sapir,et al.  Metrics on diagram groups and uniform embeddings in a Hilbert space , 2004, math/0411605.

[18]  Y. Peres,et al.  Markov chains in smooth Banach spaces and Gromov hyperbolic metric spaces , 2004, math/0410422.

[19]  A. Naor,et al.  Euclidean quotients of finite metric spaces , 2004, math/0406349.

[20]  Graham A. Niblo,et al.  Hilbert Space compression and exactness of discrete groups. , 2004, math/0403456.

[21]  J. Kaminker,et al.  Exactness and Uniform Embeddability of Discrete Groups , 2003, math/0309166.

[22]  Nathan Linial,et al.  On metric ramsey-type phenomena , 2003, STOC '03.

[23]  M. Gromov,et al.  Random walk in random groups , 2003 .

[24]  P. Assouad Plongements lipschitziens dans Rn , 2003 .

[25]  R. Fleming,et al.  Isometries on Banach Spaces: function spaces , 2002 .

[26]  Nathan Linial,et al.  Girth and euclidean distortion , 2002, STOC '02.

[27]  Nathan Linial,et al.  Girth and Euclidean distortion , 2002 .

[28]  A. Valette,et al.  Groups with the Haagerup Property , 2001 .

[29]  J. Heinonen Lectures on Analysis on Metric Spaces , 2000 .

[30]  J. Lindenstrauss,et al.  Geometric Nonlinear Functional Analysis , 1999 .

[31]  Jeff Cheeger,et al.  Differentiability of Lipschitz Functions on Metric Measure Spaces , 1999 .

[32]  M. Stoll On the asymptotics of the growth of 2-step nilpotent groups , 1998 .

[33]  William P. Minicozzi,et al.  LIOUVILLE THEOREMS FOR HARMONIC SECTIONS AND APPLICATIONS , 1998 .

[34]  K. Okikiolu Characterization of Subsets of Rectifiable Curves in Rn , 1992 .

[35]  Keith Ball,et al.  Markov chains, Riesz transforms and Lipschitz maps , 1992 .

[36]  Noga Alon,et al.  The Probabilistic Method , 2015, Fundamentals of Ramsey Theory.

[37]  P. Wojtaszczyk Banach Spaces For Analysts: Preface , 1991 .

[38]  R. Durrett Probability: Theory and Examples , 1993 .

[39]  Peter W. Jones Rectifiable sets and the Traveling Salesman Problem , 1990 .

[40]  F. Su The Banach-Tarski Paradox , 1990 .

[41]  Pierre de la Harpe,et al.  La propriété (T) de Kazhdan pour les groupes localement compacts , 1989 .

[42]  J. Steele Probability theory and combinatorial optimization , 1987 .

[43]  J. Bourgain The metrical interpretation of superreflexivity in banach spaces , 1986 .

[44]  V. Milman,et al.  Asymptotic Theory Of Finite Dimensional Normed Spaces , 1986 .

[45]  B. Mityagin,et al.  Uniform embeddings of metric spaces and of banach spaces into hilbert spaces , 1985 .

[46]  Stefan Heinrich,et al.  Ultraproducts in Banach space theory. , 1980 .

[47]  M. Edelstein Review: J. H. Wells and L. R. Williams, Embeddings and extensions in analysis , 1977 .

[48]  J. Wells,et al.  Embeddings and Extensions in Analysis , 1975 .

[49]  Joram Lindenstrauss,et al.  Classical Banach spaces , 1973 .

[50]  D. Vere-Jones Markov Chains , 1972, Nature.

[51]  D. Dacunha-castelle,et al.  Application des ultraproduits à l'étude des espaces et des algèbres de Banach , 1972 .

[52]  I. Ibragimov,et al.  Independent and stationary sequences of random variables , 1971 .

[53]  Kwok-Wai Tam,et al.  Isometries of certain function spaces , 1969 .

[54]  A. Pełczyński Projections in certain Banach spaces , 1960 .

[55]  F. Smithies Linear Operators , 2019, Nature.

[56]  Feller William,et al.  An Introduction To Probability Theory And Its Applications , 1950 .

[57]  Shizuo Kakutani,et al.  Concrete Representation of Abstract (L)-Spaces and the Mean Ergodic Theorem , 1941 .

[58]  R. Paley,et al.  A note on analytic functions in the unit circle , 1932, Mathematical Proceedings of the Cambridge Philosophical Society.

[59]  Analyst ’ s Traveling Salesman Theorems . A Survey , .