The functional organization of area V2, I: Specialization across stripes and layers

We used qualitative tests to assess the sensitivity of 1043 V2 neurons (predominantly multiunits) in anesthetised macaque monkeys to direction, length, orientation, and color of moving bar stimuli. Spectral sensitivity was additionally tested by noting ON or OFF responses to flashed stimuli of varied size and color. The location of 649 units was identified with respect to cycles of cytochrome oxidase stripes (thick-inter-thin-inter) and cortical layer. We used an initial 8-way stripe classification (4 stripes, and 4 “marginal” zones at interstripes boundaries), and a 9-way layer classification (5 standard layers (2–6), and 4 “marginal” strata at layer boundaries). These classes were collapsed differently for particular analyses of functional distribution; the main stripe-by-layer analysis was performed on 18 compartments (3 stripes × 6 layers). We found direction sensitivity only within thick stripes, orientation sensitivity mainly in thick stripes and interstripes, and spectral sensitivity mainly in thin stripes. Positive length summation was relatively more frequent in thick stripes and interstripes, and negative length/size summation in thin stripes. All these “majority” characteristics of stripes were most prominent in layers 3A and 3B. By contrast, “minority” characteristics (e.g. spectral sensitivity in thick stripes; positive size summation in thin stripes) tended to be most frequent in the outer layers, that is, layers 2 and 6. In consequence, going by the four functions tested, the distinctions between stripes were maximal in layer 3, moderate in layer 2, and minimal in layer 6.

[1]  J. Krauskopf Effect of retinal image stabilization on the appearance of heterochromatic targets. , 1963, Journal of the Optical Society of America.

[2]  R. Greenberg Biometry , 1969, The Yale Journal of Biology and Medicine.

[3]  B. Dow Functional classes of cells and their laminar distribution in monkey visual cortex. , 1974, Journal of neurophysiology.

[4]  L. Benevento,et al.  The cortical projections of the inferior pulvinar and adjacent lateral pulvinar in the rhesus monkey (macaca mulatta): An autoradiographic study , 1976, Brain Research.

[5]  D. Hubel,et al.  Ferrier lecture - Functional architecture of macaque monkey visual cortex , 1977, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[6]  J. Baizer,et al.  Visual responses of area 18 neurons in awake, behaving monkey. , 1977, Journal of neurophysiology.

[7]  A. Hendrickson,et al.  The distribution of pulvinar terminals in visual areas 17 and 18 of the monkey , 1977, Brain Research.

[8]  C. Curcio,et al.  Organization of pulvinar afferents to area 18 in the squirrel monkey: evidence for stripes , 1978, Brain Research.

[9]  K. Rockland,et al.  Laminar origins and terminations of cortical connections of the occipital lobe in the rhesus monkey , 1979, Brain Research.

[10]  P. Gouras,et al.  Responses of cells in foveal visual cortex of the monkey to pure color contrast. , 1979, Journal of neurophysiology.

[11]  M. Wong-Riley Changes in the visual system of monocularly sutured or enucleated cats demonstrable with cytochrome oxidase histochemistry , 1979, Brain Research.

[12]  J. Lund,et al.  Anatomical organization of primate visual cortex area VII , 1981, The Journal of comparative neurology.

[13]  D. Hubel,et al.  Thalamic inputs to cytochrome oxidase-rich regions in monkey visual cortex. , 1982, Proceedings of the National Academy of Sciences of the United States of America.

[14]  S. Zeki Colour coding in the cerebral cortex: The reaction of cells in monkey visual cortex to wavelengths and colours , 1983, Neuroscience.

[15]  J. Kaas,et al.  Retinotopic patterns of connections of area 17 with visual areas V‐II and MT in macaque monkeys , 1983, The Journal of comparative neurology.

[16]  D. Hubel,et al.  Specificity of cortico-cortical connections in monkey visual system , 1983, Nature.

[17]  Colin Ware,et al.  The chromatic cornsweet effect , 1983, Vision Research.

[18]  G. Blasdel,et al.  Physiological organization of layer 4 in macaque striate cortex , 1984, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[19]  P. Lennie,et al.  Chromatic mechanisms in lateral geniculate nucleus of macaque. , 1984, The Journal of physiology.

[20]  D. Hubel,et al.  Anatomy and physiology of a color system in the primate visual cortex , 1984, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[21]  D. G. Albrecht,et al.  Spatial mapping of monkey VI cells with pure color and luminance stimuli , 1984, Vision Research.

[22]  M. Wong-Riley,et al.  Quantitative light and electron microscopic analysis of cytochrome oxidase‐rich zones in V II prestriate cortex of the squirrel monkey , 1984, The Journal of comparative neurology.

[23]  M. Wong-Riley,et al.  Quantitative light and electron microscopic analysis of cytochrome oxidase‐rich zones in the striate cortex of the squirrel monkey , 1984, The Journal of comparative neurology.

[24]  D. Hubel,et al.  Specificity of intrinsic connections in primate primary visual cortex , 1984, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[25]  E. DeYoe,et al.  Segregation of efferent connections and receptive field properties in visual area V2 of the macaque , 1985, Nature.

[26]  K. Rockland,et al.  A reticular pattern of intrinsic connections in primate area V2 (area 18) , 1985, The Journal of comparative neurology.

[27]  S. Zeki,et al.  Segregation of pathways leading from area V2 to areas V4 and V5 of macaque monkey visual cortex , 1985, Nature.

[28]  H. Kennedy,et al.  A double-labeling investigation of the afferent connectivity to cortical areas V1 and V2 of the macaque monkey , 1985, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[29]  D. Hubel,et al.  Complex–unoriented cells in a subregion of primate area 18 , 1985, Nature.

[30]  John H. R. Maunsell,et al.  The projections from striate cortex (V1) to areas V2 and V3 in the macaque monkey: Asymmetries, areal boundaries, and patchy connections , 1986, The Journal of comparative neurology.

[31]  G. Orban,et al.  Velocity sensitivity and direction selectivity of neurons in areas V1 and V2 of the monkey: influence of eccentricity. , 1986, Journal of neurophysiology.

[32]  D. V. van Essen,et al.  Processing of color, form and disparity information in visual areas VP and V2 of ventral extrastriate cortex in the macaque monkey , 1986, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[33]  D H Hubel,et al.  Connections between layer 4B of area 17 and the thick cytochrome oxidase stripes of area 18 in the squirrel monkey , 1987, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[34]  DH Hubel,et al.  Segregation of form, color, and stereopsis in primate area 18 , 1987, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[35]  J. Kaas,et al.  Cortical connections of area 18 and dorsolateral visual cortex in squirrel monkeys , 1988, Visual Neuroscience.

[36]  D. C. Van Essen,et al.  Concurrent processing streams in monkey visual cortex , 1988, Trends in Neurosciences.

[37]  E. Switkes,et al.  Functional anatomy of macaque striate cortex. IV. Contrast and magno- parvo streams , 1988, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[38]  E. Switkes,et al.  Functional anatomy of macaque striate cortex. V. Spatial frequency , 1988, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[39]  S. Shipp,et al.  The functional logic of cortical connections , 1988, Nature.

[40]  D. Hubel,et al.  Segregation of form, color, movement, and depth: anatomy, physiology, and perception. , 1988, Science.

[41]  M. Hawken,et al.  Laminar organization and contrast sensitivity of direction-selective cells in the striate cortex of the Old World monkey , 1988, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[42]  E. Switkes,et al.  Functional anatomy of macaque striate cortex. III. Color , 1988, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[43]  E. Switkes,et al.  Functional anatomy of macaque striate cortex. II. Retinotopic organization , 1988, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[44]  D. Ts'o,et al.  The organization of chromatic and spatial interactions in the primate striate cortex , 1988, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[45]  S. Zeki,et al.  The Organization of Connections between Areas V5 and V2 in Macaque Monkey Visual Cortex , 1989, The European journal of neuroscience.

[46]  G. Orban,et al.  Laminar analysis of motion information processing in macaque V5 , 1989, Brain Research.

[47]  C. Stromeyer,et al.  Contribution of human short‐wave cones to luminance and motion detection. , 1989, The Journal of physiology.

[48]  J. Kaas,et al.  Cortical integration of parallel pathways in the visual system of primates , 1989, Brain Research.

[49]  S. Zeki,et al.  Modular Connections between Areas V2 and V4 of Macaque Monkey Visual Cortex , 1989, The European journal of neuroscience.

[50]  S. Zeki,et al.  The Organization of Connections between Areas V5 and V1 in Macaque Monkey Visual Cortex , 1989, The European journal of neuroscience.

[51]  R. Tootell,et al.  Functional anatomy of the second visual area (V2) in the macaque , 1989, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[52]  D. Ts'o,et al.  Functional organization of primate visual cortex revealed by high resolution optical imaging. , 1990, Science.

[53]  DH Hubel,et al.  Color and contrast sensitivity in the lateral geniculate body and primary visual cortex of the macaque monkey , 1990, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[54]  K. Rockland,et al.  Organization of individual cortical axons projecting from area V1 (area 17) to V2 (area 18) in the macaque monkey , 1990, Visual Neuroscience.

[55]  P. Lennie,et al.  Chromatic mechanisms in striate cortex of macaque , 1990, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[56]  P. Cavanagh,et al.  The contribution of color to motion , 1991 .

[57]  R B Tootell,et al.  Spatial frequency tuning of single units in macaque supragranular striate cortex. , 1991, Proceedings of the National Academy of Sciences of the United States of America.

[58]  Stuart Anstis,et al.  The contribution of color to motion in normal and color-deficient observers , 1991, Vision Research.

[59]  D. J. Felleman,et al.  Distributed hierarchical processing in the primate cerebral cortex. , 1991, Cerebral cortex.

[60]  G. Edelman,et al.  Reentry and the problem of integrating multiple cortical areas: simulation of dynamic integration in the visual system. , 1992, Cerebral cortex.

[61]  V. Casagrande,et al.  Parallel pathways in macaque monkey striate cortex: anatomically defined columns in layer III. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[62]  A. Grinvald,et al.  Relationships between orientation-preference pinwheels, cytochrome oxidase blobs, and ocular-dominance columns in primate striate cortex. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[63]  A. Cowey,et al.  Patterns of inter- and intralaminar GABAergic connections distinguish striate (V1) and extrastriate (V2, V4) visual cortices and their functionally specialized subdivisions in the rhesus monkey , 1992, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[64]  T D Albright,et al.  Form-cue invariant motion processing in primate visual cortex. , 1992, Science.

[65]  J. Bolz,et al.  Relationships between dendritic morphology and cytochrome oxidase compartments in monkey striate cortex , 1992, The Journal of comparative neurology.

[66]  E. Peterhans,et al.  Functional Organization of Area V2 in the Alert Macaque , 1993, The European journal of neuroscience.

[67]  C. Ham,et al.  The odd couple? , 1993, The Health service journal.

[68]  Leslie G. Ungerleider,et al.  The modular organization of projections from areas V1 and V2 to areas V4 and TEO in macaques , 1993, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[69]  G. Orban,et al.  Cue-invariant shape selectivity of macaque inferior temporal neurons. , 1993, Science.

[70]  J. Maunsell,et al.  Magnocellular and parvocellular contributions to the responses of neurons in macaque striate cortex , 1994, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[71]  David C. Van Essen,et al.  Multiple processing streams in occipitotemporal visual cortex , 1994, Nature.

[72]  R. Malach,et al.  Relationship between orientation domains, cytochrome oxidase stripes, and intrinsic horizontal connections in squirrel monkey area V2. , 1994, Cerebral cortex.

[73]  K. Rockland The Organization of Feedback Connections from Area V2 (18) to V1 (17) , 1994 .

[74]  J. B. Levitt,et al.  Intrinsic cortical connections in macaque visual area V2: Evidence for interaction between different functional streams , 1994, The Journal of comparative neurology.

[75]  J. B. Levitt,et al.  Receptive fields and functional architecture of macaque V2. , 1994, Journal of neurophysiology.

[76]  K. Rockland,et al.  Divergent feedback connections from areas V4 and TEO in the macaque , 1994, Visual Neuroscience.

[77]  J. B. Levitt,et al.  Independence and merger of thalamocortical channels within macaque monkey primary visual cortex: Anatomy of interlaminar projections , 1994, Visual Neuroscience.

[78]  A. Leventhal,et al.  Concomitant sensitivity to orientation, direction, and color of cells in layers 2, 3, and 4 of monkey striate cortex , 1995, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[79]  D. Ts'o,et al.  Visual topography in primate V2: multiple representation across functional stripes , 1995, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[80]  K. Purpura,et al.  Contrast sensitivity and spatial frequency response of primate cortical neurons in and around the cytochrome oxidase blobs , 1995, Vision Research.

[81]  C F Stromeyer,et al.  Contributions of human long‐wave and middle‐wave cones to motion detection. , 1995, The Journal of physiology.

[82]  Karl R. Gegenfurtner,et al.  Temporal and chromatic properties of motion mechanisms , 1995, Vision Research.

[83]  P Girard,et al.  Visual latencies in cytochrome oxidase bands of macaque area V2. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[84]  G. Orban,et al.  Shape and Spatial Distribution of Receptive Fields and Antagonistic Motion Surrounds in the Middle Temporal Area (V5) of the Macaque , 1995, The European journal of neuroscience.

[85]  W Singer,et al.  Visual feature integration and the temporal correlation hypothesis. , 1995, Annual review of neuroscience.

[86]  A. Treisman The binding problem , 1996, Current Opinion in Neurobiology.

[87]  Anthony J. Movshon,et al.  Visual Response Properties of Striate Cortical Neurons Projecting to Area MT in Macaque Monkeys , 1996, The Journal of Neuroscience.

[88]  Andrew M. Derrington,et al.  Rapid colour-specific detection of motion in human vision , 1996, Nature.

[89]  B. Dow,et al.  Color, orientation and cytochrome oxidase reactivity in areas V1, V2 and V4 of macaque monkey visual cortex , 1996, Behavioural Brain Research.

[90]  K R Gegenfurtner,et al.  Processing of color, form, and motion in macaque area V2 , 1996, Visual Neuroscience.

[91]  H. Tamura,et al.  Less Segregated Processing of Visual Information in V2 than in V1 of the Monkey Visual Cortex , 1996, The European journal of neuroscience.

[92]  J. B. Levitt,et al.  Relation between patterns of intrinsic lateral connectivity, ocular dominance, and cytochrome oxidase-reactive regions in macaque monkey striate cortex. , 1996, Cerebral cortex.

[93]  J. Olavarria,et al.  The global pattern of cytochrome oxidase stripes in visual area V2 of the macaque monkey. , 1997, Cerebral cortex.

[94]  G. Ghose,et al.  Form processing modules in primate area V4. , 1997, Journal of neurophysiology.

[95]  D. Kiper,et al.  Chromatic properties of neurons in macaque area V2 , 1997, Visual Neuroscience.

[96]  D J Felleman,et al.  Modular Organization of Occipito-Temporal Pathways: Cortical Connections between Visual Area 4 and Visual Area 2 and Posterior Inferotemporal Ventral Area in Macaque Monkeys , 1997, The Journal of Neuroscience.

[97]  W Singer,et al.  Role of the temporal domain for response selection and perceptual binding. , 1997, Cerebral cortex.

[98]  A. Peters,et al.  The organization of pyramidal cells in area 18 of the rhesus monkey. , 1997, Cerebral cortex.

[99]  Anna W. Roe,et al.  The Functional Architecture of Area V2 in the Macaque Monkey , 1997 .

[100]  E. Callaway Local circuits in primary visual cortex of the macaque monkey. , 1998, Annual review of neuroscience.

[101]  W Singer,et al.  Consciousness and the structure of neuronal representations. , 1998, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[102]  Patrick Cavanagh,et al.  Complete sparing of high-contrast color input to motion perception in cortical color blindness , 1998, Nature Neuroscience.

[103]  D J Felleman,et al.  Segregation and convergence of functionally defined V2 thin stripe and interstripe compartment projections to area V4 of macaques. , 1999, Cerebral cortex.

[104]  Geoffrey M. Ghose,et al.  Specialized Representations in Visual Cortex A Role for Binding? , 1999, Neuron.

[105]  Wolf Singer,et al.  Neuronal Synchrony: A Versatile Code for the Definition of Relations? , 1999, Neuron.

[106]  Brian A Wandell,et al.  Perceived Speed of Colored Stimuli , 1999, Neuron.

[107]  C. Gray The Temporal Correlation Hypothesis of Visual Feature Integration Still Alive and Well , 1999, Neuron.

[108]  Thomas D Albright,et al.  Seeing the Big Picture Integration of Image Cues in the Primate Visual System , 1999, Neuron.

[109]  D Purves,et al.  An Empirical Explanation of the Cornsweet Effect , 1999, The Journal of Neuroscience.

[110]  Michael N. Shadlen,et al.  Synchrony Unbound A Critical Evaluation of the Temporal Binding Hypothesis , 1999, Neuron.

[111]  R. L. Valois,et al.  Some transformations of color information from lateral geniculate nucleus to striate cortex. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[112]  R. Shapley,et al.  The spatial transformation of color in the primary visual cortex of the macaque monkey , 2001, Nature Neuroscience.

[113]  S. Zeki,et al.  The functional organization of area V2, II: The impact of stripes on visual topography , 2002, Visual Neuroscience.

[114]  J. B. Levitt,et al.  Connections between the pulvinar complex and cytochrome oxidase-defined compartments in visual area V2 of macaque monkey , 2004, Experimental Brain Research.

[115]  Peter König,et al.  Binding by temporal structure in multiple feature domains of an oscillatory neuronal network , 1994, Biological Cybernetics.

[116]  Terrence J. Sejnowski,et al.  Inhibition synchronizes sparsely connected cortical neurons within and between columns in realistic network models , 1996, Journal of Computational Neuroscience.