BioMEMS in drug delivery.

The drive to design micro-scale medical devices which can be reliably and uniformly mass produced has prompted many researchers to adapt processing technologies from the semiconductor industry. By operating at a much smaller length scale, the resulting biologically-oriented microelectromechanical systems (BioMEMS) provide many opportunities for improved drug delivery: Low-dose vaccinations and painless transdermal drug delivery are possible through precisely engineered microneedles which pierce the skin's barrier layer without reaching the nerves. Low-power, low-volume BioMEMS pumps and reservoirs can be implanted where conventional pumping systems cannot. Drug formulations with geometrically complex, extremely uniform micro- and nano-particles are formed through micromolding or with microfluidic devices. This review describes these BioMEMS technologies and discusses their current state of implementation. As these technologies continue to develop and capitalize on their simpler integration with other MEMS-based systems such as computer controls and telemetry, BioMEMS' impact on the field of drug delivery will continue to increase.

[1]  Robert Langer,et al.  Responsive micromolds for sequential patterning of hydrogel microstructures. , 2011, Journal of the American Chemical Society.

[2]  Mark R Prausnitz,et al.  Kinetics of skin resealing after insertion of microneedles in human subjects. , 2011, Journal of controlled release : official journal of the Controlled Release Society.

[3]  M. Cima,et al.  A controlled-release microchip , 1999, Nature.

[4]  Mark R Prausnitz,et al.  Dose sparing enabled by skin immunization with influenza virus-like particle vaccine using microneedles. , 2010, Journal of controlled release : official journal of the Controlled Release Society.

[5]  James C Birchall,et al.  Microneedle delivery of plasmid DNA to living human skin: Formulation coating, skin insertion and gene expression. , 2012, Journal of controlled release : official journal of the Controlled Release Society.

[6]  Jung-Hwan Park,et al.  Intracellular protein delivery and gene transfection by electroporation using a microneedle electrode array. , 2012, Small.

[7]  S. Quake,et al.  Dynamic pattern formation in a vesicle-generating microfluidic device. , 2001, Physical review letters.

[8]  R. Fernandes,et al.  Self-folding polymeric containers for encapsulation and delivery of drugs. , 2012, Advanced drug delivery reviews.

[9]  Fritz B Prinz,et al.  Biodegradable micro-osmotic pump for long-term and controlled release of basic fibroblast growth factor. , 2007, Journal of controlled release : official journal of the Controlled Release Society.

[10]  Mark G. Allen,et al.  Hollow metal microneedles for insulin delivery to diabetic rats , 2005, IEEE Transactions on Biomedical Engineering.

[11]  Seajin Oh,et al.  Dissolvable microneedle patches for the delivery of cell-culture-derived influenza vaccine antigens. , 2012, Journal of pharmaceutical sciences.

[12]  D. Maillefer,et al.  A high-performance silicon micropump for an implantable drug delivery system , 1999, Technical Digest. IEEE International MEMS 99 Conference. Twelfth IEEE International Conference on Micro Electro Mechanical Systems (Cat. No.99CH36291).

[13]  Andrei G. Fedorov,et al.  Droplet formation and ejection from a micromachined ultrasonic droplet generator: Visualization and scaling , 2005 .

[14]  M. Garcia‐Fuentes,et al.  Protein delivery based on uncoated and chitosan-coated mesoporous silicon microparticles. , 2011, Colloids and surfaces. B, Biointerfaces.

[15]  Chih-Hui Yang,et al.  Manufacturing monodisperse chitosan microparticles containing ampicillin using a microchannel chip , 2007, Biomedical microdevices.

[16]  Jin Bum Kim,et al.  Curved biodegradable microneedles for vascular drug delivery. , 2012, Small.

[17]  Yuqin Qiu,et al.  Enhancement of skin permeation of docetaxel: a novel approach combining microneedle and elastic liposomes. , 2008, Journal of controlled release : official journal of the Controlled Release Society.

[18]  Yong-Kyu Yoon,et al.  Polymer particle-based micromolding to fabricate novel microstructures , 2007, Biomedical microdevices.

[19]  B. Ziaie,et al.  A magnetically driven PDMS peristaltic micropump , 2004, The 26th Annual International Conference of the IEEE Engineering in Medicine and Biology Society.

[20]  Babak Ziaie,et al.  Integration of hydrogels with hard and soft microstructures. , 2007, Journal of nanoscience and nanotechnology.

[21]  D. Irvine,et al.  Nano‐Layered Microneedles for Transcutaneous Delivery of Polymer Nanoparticles and Plasmid DNA , 2010, Advanced materials.

[22]  Cory Berkland,et al.  Uniform double-walled polymer microspheres of controllable shell thickness. , 2004, Journal of controlled release : official journal of the Controlled Release Society.

[23]  Regina Luttge,et al.  Silicon micromachined hollow microneedles for transdermal liquid transport , 2003 .

[24]  Jeffrey D Zahn,et al.  Microneedle Insertion Force Reduction Using Vibratory Actuation , 2004, Biomedical microdevices.

[25]  Mary E Napier,et al.  Engineering nanomedicines using stimuli-responsive biomaterials. , 2012, Advanced drug delivery reviews.

[26]  Hyungil Jung,et al.  Drawing lithography for microneedles: a review of fundamentals and biomedical applications. , 2012, Biomaterials.

[27]  Mark R Prausnitz,et al.  Pocketed Microneedles for Drug Delivery to the Skin. , 2008, The Journal of physics and chemistry of solids.

[28]  Jung-Hwan Park,et al.  Tapered Conical Polymer Microneedles Fabricated Using an Integrated Lens Technique for Transdermal Drug Delivery , 2007, IEEE Transactions on Biomedical Engineering.

[29]  N. K. Ali,et al.  Nanoporous silicon as drug delivery systems for cancer therapies , 2012 .

[30]  A. Lee,et al.  An AC magnetohydrodynamic micropump , 2000 .

[31]  F. Goldschmidtboeing,et al.  Design of an implantable active microport system for patient specific drug release , 2006, Biomedical microdevices.

[32]  Aleksandr Ovsianikov,et al.  Fabrication of Polymer Microneedles Using a Two-Photon Polymerization and Micromolding Process , 2009, Journal of diabetes science and technology.

[33]  Y. Ahn,et al.  Disposable thermo-pneumatic micropump for bio lab-on-a-chip application , 2009 .

[34]  R. Siegel,et al.  BioMEMS devices for drug delivery , 2009, IEEE Engineering in Medicine and Biology Magazine.

[35]  Michel Cormier,et al.  Microneedle-based vaccines. , 2009, Current topics in microbiology and immunology.

[36]  Hongyan He,et al.  Fabrication of particulate reservoir-containing, capsulelike, and self-folding polymer microstructures for drug delivery. , 2007, Small.

[37]  Albert P. Pisano,et al.  Silicon-processed microneedles , 1999 .

[38]  H. Kahn,et al.  Thin-film shape-memory alloy actuated micropumps , 1998 .

[39]  Hyungil Jung,et al.  Dissolving microneedles for transdermal drug administration prepared by stepwise controlled drawing of maltose. , 2011, Biomaterials.

[40]  G. D. Hutcheson The Economic Implications of Moore’s Law , 2009 .

[41]  T. Desai,et al.  Emerging microtechnologies for the development of oral drug delivery devices. , 2012, Advanced drug delivery reviews.

[42]  Mark R Prausnitz,et al.  Infusion pressure and pain during microneedle injection into skin of human subjects. , 2011, Biomaterials.

[43]  H. Stone,et al.  Formation of dispersions using “flow focusing” in microchannels , 2003 .

[44]  Dominiek Reynaerts,et al.  An implantable drug-delivery system based on shape memory alloy micro-actuation , 1997 .

[45]  Ajay K Banga,et al.  Microneedles and their applications. , 2011, Recent patents on drug delivery & formulation.

[46]  Babak Ziaie,et al.  A magnetically driven PDMS micropump with ball check-valves , 2005 .

[47]  G. Whitesides,et al.  Generation of monodisperse particles by using microfluidics: control over size, shape, and composition. , 2005, Angewandte Chemie.

[48]  Dorian Liepmann,et al.  Microneedles and transdermal applications , 2007, Expert opinion on drug delivery.

[49]  Mark R Prausnitz,et al.  Separable arrowhead microneedles. , 2011, Journal of controlled release : official journal of the Controlled Release Society.

[50]  Nicholas A Peppas,et al.  Microfabricated drug delivery devices. , 2005, International journal of pharmaceutics.

[51]  C. Cabuz,et al.  The dual diaphragm pump , 2001, Technical Digest. MEMS 2001. 14th IEEE International Conference on Micro Electro Mechanical Systems (Cat. No.01CH37090).

[52]  Mauro Ferrari,et al.  Tailoring width of microfabricated nanochannels to solute size can be used to control diffusion kinetics. , 2005, Journal of controlled release : official journal of the Controlled Release Society.

[53]  Dorian Liepmann,et al.  Continuous On-Chip Micropumping for Microneedle Enhanced Drug Delivery , 2004, Biomedical microdevices.

[54]  T. Desai,et al.  Bioadhesive microdevices with multiple reservoirs: a new platform for oral drug delivery. , 2002, Journal of controlled release : official journal of the Controlled Release Society.

[55]  N. Roxhed,et al.  Membrane-sealed hollow microneedles and related administration schemes for transdermal drug delivery , 2008, Biomedical microdevices.

[56]  Shao-Tang Sun,et al.  Phase transitions in ionic gels , 1980 .

[57]  Jeong-Hyun Cho,et al.  Self-assembly of lithographically patterned nanoparticles. , 2009, Nano letters.

[58]  Juan G. Santiago,et al.  A review of micropumps , 2004 .

[59]  Boris N. Chichkov,et al.  Two Photon Polymerization of Polymer–Ceramic Hybrid Materials for Transdermal Drug Delivery , 2007 .

[60]  R. Zengerle,et al.  Osmotic micropumps for drug delivery. , 2012, Advanced drug delivery reviews.

[61]  Arthur Rook,et al.  TEXTBOOK OF DERMATOLOGY , 2007 .

[62]  Takashi Miyata,et al.  A reversibly antigen-responsive hydrogel , 1999, Nature.

[63]  M. Ameri,et al.  Erythropoietin-Coated ZP-Microneedle Transdermal System: Preclinical Formulation, Stability, and Delivery , 2012, Pharmaceutical Research.

[64]  Mark R. Prausnitz,et al.  Coating Formulations for Microneedles , 2007, Pharmaceutical Research.

[65]  A. Giacca,et al.  A monolithic polymeric microdevice for pH-responsive drug delivery , 2009, Biomedical microdevices.

[66]  Mahmoud Ameri,et al.  Transdermal delivery of desmopressin using a coated microneedle array patch system. , 2004, Journal of controlled release : official journal of the Controlled Release Society.

[67]  S. Sugiura,et al.  Microfabricated airflow nozzle for microencapsulation of living cells into 150 micrometer microcapsules , 2007, Biomedical microdevices.

[68]  Po-Ying Li,et al.  Implantable MEMS drug delivery device for cancer radiation reduction , 2010, 2010 IEEE 23rd International Conference on Micro Electro Mechanical Systems (MEMS).

[69]  P. Friden,et al.  In vivo iontophoretic delivery of salmon calcitonin across microporated skin. , 2012, Journal of pharmaceutical sciences.

[70]  Jung-Hwan Park,et al.  Hydrogel swelling as a trigger to release biodegradable polymer microneedles in skin. , 2012, Biomaterials.

[71]  M. Shikida,et al.  Electrostatic film actuator with a large vertical displacement , 1992, [1992] Proceedings IEEE Micro Electro Mechanical Systems.

[72]  S. C. Fan,et al.  Parathyroid Hormone PTH(1-34) Formulation that Enables Uniform Coating on a Novel Transdermal Microprojection Delivery System , 2010, Pharmaceutical Research.

[73]  Ki Sung Lee,et al.  An electrostatically driven valve-less peristaltic micropump with a stepwise chamber , 2012 .

[74]  R. Piva,et al.  roduction of polymeric micelles by microfluidic technology for combined drug elivery : Application to osteogenic differentiation of human periodontal igament mesenchymal stem cells ( hPDLSCs ) , 2012 .

[75]  Shyla Booker A Water Powered Micro Drug Delivery System , .

[76]  Jung-Hwan Park,et al.  Biodegradable polymer microneedles: fabrication, mechanics and transdermal drug delivery. , 2005, Journal of controlled release : official journal of the Controlled Release Society.

[77]  Rashid Bashir,et al.  BioMEMS: state-of-the-art in detection, opportunities and prospects. , 2004, Advanced drug delivery reviews.

[78]  T. Corcoran,et al.  Systemic delivery of atropine sulfate by the MicroDose Dry-Powder Inhaler. , 2013, Journal of aerosol medicine and pulmonary drug delivery.

[79]  A. Salgado,et al.  Multifunctionalized CMCht/PAMAM dendrimer nanoparticles modulate the cellular uptake by astrocytes and oligodendrocytes in primary cultures of glial cells. , 2012, Macromolecular bioscience.

[80]  Dhananjay Dendukuri,et al.  Controlled synthesis of nonspherical microparticles using microfluidics. , 2005, Langmuir : the ACS journal of surfaces and colloids.

[81]  Matthew D. McDermott,et al.  The hydrogel template method for fabrication of homogeneous nano/microparticles. , 2010, Journal of controlled release : official journal of the Controlled Release Society.

[82]  D. Liepmann,et al.  Arrays of hollow out-of-plane microneedles for drug delivery , 2005, Journal of Microelectromechanical Systems.

[83]  Diane E. Sutter,et al.  Improved genetic immunization via micromechanical disruption of skin-barrier function and targeted epidermal delivery , 2002, Nature Medicine.

[84]  J G Hamilton,et al.  Needle phobia: a neglected diagnosis. , 1995, The Journal of family practice.

[85]  Joseph M DeSimone,et al.  Shape-specific, monodisperse nano-molding of protein particles. , 2008, Journal of the American Chemical Society.

[86]  Ajay K Banga,et al.  Modulated iontophoretic delivery of small and large molecules through microchannels. , 2012, International journal of pharmaceutics.

[87]  Jan Vanfleteren,et al.  Fabrication of a biocompatible flexible electroosmosis micropump , 2012 .

[88]  Mary E Napier,et al.  The complex role of multivalency in nanoparticles targeting the transferrin receptor for cancer therapies. , 2010, Journal of the American Chemical Society.

[89]  L. Brown,et al.  Site‐Selectively Coated, Densely‐Packed Microprojection Array Patches for Targeted Delivery of Vaccines to Skin , 2011 .

[90]  Byeong Kwon Ju,et al.  Rapidly dissolving fibroin microneedles for transdermal drug delivery , 2011 .

[91]  Wijaya Martanto,et al.  Transdermal Delivery of Insulin Using Microneedles in Vivo , 2004, Pharmaceutical Research.

[92]  David Trebotich,et al.  Microdialysis Microneedles for Continuous Medical Monitoring , 2005, Biomedical microdevices.

[93]  T. Okano,et al.  Totally Synthetic Polymer Gels Responding to External Glucose Concentration: Their Preparation and Application to On−Off Regulation of Insulin Release , 1998 .

[94]  Peter McLoughlin,et al.  Microneedle mediated delivery of nanoparticles into human skin. , 2009, International journal of pharmaceutics.

[95]  J. DeSimone,et al.  Tunable bifunctional silyl ether cross-linkers for the design of acid-sensitive biomaterials. , 2010, Journal of the American Chemical Society.

[96]  Li Shi,et al.  Scalable imprinting of shape-specific polymeric nanocarriers using a release layer of switchable water solubility. , 2012, ACS nano.

[97]  Yuandong Gu,et al.  A microstructured silicon membrane with entrapped hydrogels for environmentally sensitive fluid gating , 2006 .

[98]  Jung Dong Kim,et al.  A high-capacity, hybrid electro-microneedle for in-situ cutaneous gene transfer. , 2011, Biomaterials.

[99]  Robert Langer,et al.  A BioMEMS review: MEMS technology for physiologically integrated devices , 2004, Proceedings of the IEEE.

[100]  M. Richter,et al.  A bidirectional silicon micropump , 1995 .

[101]  Seung-Man Yang,et al.  Elaborate Design Strategies Toward Novel Microcarriers for Controlled Encapsulation and Release , 2013 .

[102]  Y. B. Choy,et al.  Uniform biodegradable hydrogel microspheres fabricated by a surfactant-free electric-field-assisted method. , 2007, Macromolecular bioscience.

[103]  Miko Elwenspoek,et al.  An electrochemical micro actuator , 1995, Proceedings IEEE Micro Electro Mechanical Systems. 1995.

[104]  Weien Yuan,et al.  A scalable fabrication process of polymer microneedles , 2012, International journal of nanomedicine.

[105]  J. Stockman,et al.  Dissolving polymer microneedle patches for influenza vaccination , 2012 .

[106]  Yeu-Chun Kim,et al.  Formulation of Microneedles Coated with Influenza Virus-like Particle Vaccine , 2010, AAPS PharmSciTech.

[107]  S. Saati,et al.  An electrochemical intraocular drug delivery device , 2007 .

[108]  L. Babiuk,et al.  Poly[di(carboxylatophenoxy)phosphazene] is a potent adjuvant for intradermal immunization , 2009, Proceedings of the National Academy of Sciences.

[109]  J. DeSimone,et al.  Development of a nanoparticle-based influenza vaccine using the PRINT technology. , 2013, Nanomedicine : nanotechnology, biology, and medicine.

[110]  Kristy M Ainslie,et al.  Microfabrication of an asymmetric, multi-layered microdevice for controlled release of orally delivered therapeutics. , 2008, Lab on a chip.

[111]  Mark R. Prausnitz,et al.  Layer-by-layer assembly of DNA- and protein-containing films on microneedles for drug delivery to the skin. , 2010, Biomacromolecules.

[112]  P. Yager,et al.  A ferrofluidic magnetic micropump , 2001 .

[113]  P. Vogt,et al.  Percutaneous Collagen Induction: Minimally Invasive Skin Rejuvenation without Risk of Hyperpigmentation—Fact or Fiction? , 2008, Plastic and reconstructive surgery.

[114]  Juan G. Santiago,et al.  Fabrication and characterization of electroosmotic micropumps , 2001 .

[115]  L. Jang,et al.  Peristaltic piezoelectric micropump system for biomedical applications , 2007, Biomedical microdevices.

[116]  Yu-Chong Tai,et al.  A practical thermopneumatic valve , 1999, Technical Digest. IEEE International MEMS 99 Conference. Twelfth IEEE International Conference on Micro Electro Mechanical Systems (Cat. No.99CH36291).

[117]  Yuandong Gu,et al.  A hydrogel-actuated environmentally sensitive microvalve for active flow control , 2003 .

[118]  R. Luttge,et al.  Micromolding for ceramic microneedle arrays , 2011 .

[119]  Tina K. Givrad,et al.  A Parylene MEMS Electrothermal Valve , 2009, Journal of Microelectromechanical Systems.

[120]  M. Prausnitz,et al.  Enhanced memory responses to seasonal H1N1 influenza vaccination of the skin with the use of vaccine-coated microneedles. , 2010, The Journal of infectious diseases.

[121]  E. Meng,et al.  High-Efficiency MEMS Electrochemical Actuators and Electrochemical Impedance Spectroscopy Characterization , 2012, Journal of Microelectromechanical Systems.

[122]  Barjor Gimi,et al.  Cell Viability and Noninvasive In Vivo MRI Tracking of 3D Cell Encapsulating Self-Assembled Microcontainers , 2007, Cell transplantation.

[123]  Henry Brem,et al.  Resorbable polymer microchips releasing BCNU inhibit tumor growth in the rat 9L flank model. , 2007, Journal of controlled release : official journal of the Controlled Release Society.

[124]  Robert Langer,et al.  First-in-Human Testing of a Wirelessly Controlled Drug Delivery Microchip , 2012, Science Translational Medicine.

[125]  Mark R. Prausnitz,et al.  Dissolving Polymer Microneedle Patches for Influenza Vaccination , 2010, Nature Medicine.

[126]  M. L. Reed,et al.  Micromechanical devices for intravascular drug delivery. , 1998, Journal of pharmaceutical sciences.

[127]  S. Rose,et al.  A continuous long-term injector. , 1955, The Australian journal of experimental biology and medical science.

[128]  Mauro Ferrari,et al.  Mesoporous silicon particles as a multistage delivery system for imaging and therapeutic applications. , 2008, Nature nanotechnology.

[129]  Wen-Cheng Yang,et al.  Multidrug release based on microneedle arrays filled with pH-responsive PLGA hollow microspheres. , 2012, Biomaterials.

[130]  M. Madou Fundamentals of microfabrication and nanotechnology , 2012 .

[131]  A. Jun,et al.  Systematic assessment of microneedle injection into the mouse cornea , 2012, European Journal of Medical Research.

[132]  Hiroaki Suzuki,et al.  Integrated microfluidic system with electrochemically actuated on-chip pumps and valves , 2003 .

[133]  John T Santini,et al.  Electrothermally activated microchips for implantable drug delivery and biosensing. , 2005, Journal of controlled release : official journal of the Controlled Release Society.

[134]  Stephen A. Campbell,et al.  Fabrication Engineering at the Micro and Nanoscale , 2007 .

[135]  Shuichi Miyazaki,et al.  Miniaturized shape memory alloy pumps for stepping microfluidic transport , 2012 .

[136]  M. Prausnitz,et al.  Cutaneous vaccination using microneedles coated with hepatitis C DNA vaccine , 2010, Gene Therapy.

[137]  Keizo Fukushima,et al.  Two-Layered Dissolving Microneedles for Percutaneous Delivery of Peptide/Protein Drugs in Rats , 2010, Pharmaceutical Research.

[138]  G. Holzapfel,et al.  Penetration-Enhanced Ultrasharp Microneedles and Prediction on Skin Interaction for Efficient Transdermal Drug Delivery , 2007, Journal of Microelectromechanical Systems.

[139]  Tielin Shi,et al.  Iontophoresis-driven penetration of nanovesicles through microneedle-induced skin microchannels for enhancing transdermal delivery of insulin. , 2009, Journal of controlled release : official journal of the Controlled Release Society.

[140]  K. Arndt Textbook of Dermatology (2nd Edition) (Book) , 1973 .

[141]  Mauro Ferrari,et al.  Mesoporous Silicon‐PLGA Composite Microspheres for the Double Controlled Release of Biomolecules for Orthopedic Tissue Engineering , 2012 .

[142]  Y. Rhee,et al.  Generation of monodisperse alginate microbeads and in situ encapsulation of cell in microfluidic device , 2007, Biomedical microdevices.

[143]  Shankar Chandrasekaran,et al.  Surface micromachined metallic microneedles , 2003 .

[144]  A. Loni,et al.  Sustained antibacterial activity from triclosan-loaded nanostructured mesoporous silicon. , 2010, Molecular pharmaceutics.

[145]  S. Baker,et al.  Generation of nanoparticles of controlled size using ultrasonic piezoelectric oscillators in solution. , 2010, ACS applied materials & interfaces.

[146]  Jung-Hwan Park,et al.  Microneedles for drug and vaccine delivery. , 2012, Advanced drug delivery reviews.

[147]  E. Meng,et al.  A low power, on demand electrothermal valve for wireless drug delivery applications. , 2010, Lab on a chip.

[148]  Gwo-Bin Lee,et al.  Microfluidic device utilizing pneumatic micro-vibrators to generate alginate microbeads for microencapsulation of cells , 2010 .

[149]  Dominiek Reynaerts,et al.  An Implantable Drug Delivery System Based on Shape-Memory Alloys , 2000 .

[150]  Barjor Gimi,et al.  SU-8-based immunoisolative microcontainer with nanoslots defined by nanoimprint lithography. , 2009, Journal of vacuum science & technology. B, Microelectronics and nanometer structures : processing, measurement, and phenomena : an official journal of the American Vacuum Society.

[151]  Young Bin Choy,et al.  Ultrasonic welding method to fabricate polymer microstructure encapsulating protein with minimum damage , 2008 .

[152]  C. Tzeng,et al.  Microfluidic assisted synthesis of multi-functional polycaprolactone microcapsules: incorporation of CdTe quantum dots, Fe3O4 superparamagnetic nanoparticles and tamoxifen anticancer drugs. , 2009, Lab on a chip.

[153]  S.L. Tao,et al.  Fabrication of multilayered particles with structured, complex three-dimensional architecture , 2005, 2005 3rd IEEE/EMBS Special Topic Conference on Microtechnology in Medicine and Biology.

[154]  D. Liepmann,et al.  A planar micropump utilizing thermopneumatic actuation and in-plane flap valves , 2004, 17th IEEE International Conference on Micro Electro Mechanical Systems. Maastricht MEMS 2004 Technical Digest.

[155]  M.J. de Boer,et al.  Integrated Lithographic Molding for Microneedle-Based Devices , 2007, Journal of Microelectromechanical Systems.

[156]  A. Stinchcomb,et al.  Naltrexone salt selection for enhanced transdermal permeation through microneedle-treated skin. , 2012, Journal of pharmaceutical sciences.

[157]  D. Xing,et al.  Micropumps, microvalves, and micromixers within PCR microfluidic chips: Advances and trends. , 2007, Biotechnology advances.

[158]  M. Ferrari,et al.  Multistage delivery of chemotherapeutic nanoparticles for breast cancer treatment. , 2013, Cancer letters.

[159]  M. Prausnitz,et al.  Delivery of subunit influenza vaccine to skin with microneedles improves immunogenicity and long-lived protection , 2012, Scientific Reports.

[160]  Li Shi,et al.  Nanoimprint lithography based fabrication of shape-specific, enzymatically-triggered smart nanoparticles. , 2008, Journal of controlled release : official journal of the Controlled Release Society.

[161]  M. Gijs,et al.  Plastic micropump with ferrofluidic actuation , 2005, Journal of Microelectromechanical Systems.

[162]  M. Willmann,et al.  Micromachined thermoelectrically driven cantilever structures for fluid jet deflection , 1992, [1992] Proceedings IEEE Micro Electro Mechanical Systems.

[163]  Suresh V. Garimella,et al.  Recent advances in microscale pumping technologies: a review and evaluation , 2008 .

[164]  Ciprian Iliescu,et al.  Microfabricated microneedle with porous tip for drug delivery , 2006 .

[165]  Tejal A. Desai,et al.  Microfabrication of Multilayer, Asymmetric, Polymeric Devices for Drug Delivery , 2005 .

[166]  Ali Khademhosseini,et al.  Micromolding of shape-controlled, harvestable cell-laden hydrogels. , 2006, Biomaterials.

[167]  A. B. Frazier,et al.  Micromachined needle arrays for drug delivery or fluid extraction. , 1999, IEEE engineering in medicine and biology magazine : the quarterly magazine of the Engineering in Medicine & Biology Society.

[168]  André R Studart,et al.  Droplet microfluidics for fabrication of non-spherical particles. , 2010, Macromolecular rapid communications.

[169]  Mauro Ferrari,et al.  Tailoring the degradation kinetics of mesoporous silicon structures through PEGylation. , 2010, Journal of biomedical materials research. Part A.

[170]  Seiji Aoyagi,et al.  Biodegradable polymer needle with various tip angles and consideration on insertion mechanism of mosquito's proboscis , 2008 .

[171]  M. Prausnitz,et al.  Immunization by vaccine-coated microneedle arrays protects against lethal influenza virus challenge , 2009, Proceedings of the National Academy of Sciences.

[172]  T. Desai,et al.  Bioadhesive Microdevices for Drug Delivery: A Feasibility Study , 2001 .

[173]  Takaya Miyano,et al.  Sugar Micro Needles as Transdermic Drug Delivery System , 2005, Biomedical microdevices.

[174]  Masayoshi Esashi,et al.  Normally close microvalve and micropump fabricated on a silicon wafer , 1989, IEEE Micro Electro Mechanical Systems, , Proceedings, 'An Investigation of Micro Structures, Sensors, Actuators, Machines and Robots'.

[175]  G. Whitesides,et al.  Formation of droplets and bubbles in a microfluidic T-junction-scaling and mechanism of break-up. , 2006, Lab on a chip.

[176]  M. Ochoa,et al.  A fermentation-powered thermopneumatic pump for biomedical applications. , 2012, Lab on a chip.

[177]  Conor O'Mahony,et al.  Coated microneedle arrays for transcutaneous delivery of live virus vaccines. , 2012, Journal of controlled release : official journal of the Controlled Release Society.

[178]  Ronald A. Siegel,et al.  pH-Dependent Equilibrium Swelling Properties of Hydrophobic Polyelectrolyte Copolymer Gels , 1988 .

[179]  Joseph M. DeSimone,et al.  Reductively labile PRINT particles for the delivery of doxorubicin to HeLa cells. , 2008, Journal of the American Chemical Society.

[180]  Mauro Ferrari,et al.  Sustained small interfering RNA delivery by mesoporous silicon particles. , 2010, Cancer research.

[181]  Dorian Liepmann,et al.  Microfabricated Polysilicon Microneedles for Minimally Invasive Biomedical Devices , 2000 .

[182]  Ryuji Morita,et al.  Metal microneedle fabrication using twisted light with spin. , 2010, Optics express.

[183]  Steven S. Saliterman,et al.  Fundamentals of bioMEMS and medical microdevices , 2006 .

[184]  Y. Gianchandani,et al.  A Multidrug Delivery System Using a Piezoelectrically Actuated Silicon Valve Manifold With Embedded Sensors , 2011, Journal of Microelectromechanical Systems.

[185]  Robert Langer,et al.  In vivo release from a drug delivery MEMS device. , 2004, Journal of controlled release : official journal of the Controlled Release Society.

[186]  E. S. Kim,et al.  Micropump based on PZT unimorph and one-way parylene valves , 2004 .

[187]  Robert Langer,et al.  Preparation of monodisperse biodegradable polymer microparticles using a microfluidic flow-focusing device for controlled drug delivery. , 2009, Small.

[188]  Mark R Prausnitz,et al.  Microneedles permit transdermal delivery of a skin-impermeant medication to humans , 2008, Proceedings of the National Academy of Sciences.

[189]  Anne L. van de Ven,et al.  Synthetic nanoparticles functionalized with biomimetic leukocyte membranes possess cell-like functions. , 2013, Nature nanotechnology.

[190]  Dhananjay Dendukuri,et al.  Continuous-flow lithography for high-throughput microparticle synthesis , 2006, Nature materials.

[191]  Seong Ho Kang,et al.  Improvement in antigen-delivery using fabrication of a grooves-embedded microneedle array , 2009 .

[192]  Tejal A Desai,et al.  Nanoporous microsystems for islet cell replacement. , 2004, Advanced drug delivery reviews.

[193]  Nicholas Ferrell,et al.  Fabrication of polymeric microparticles for drug delivery by soft lithography. , 2006, Biomaterials.

[194]  Koen van der Maaden,et al.  Microneedle technologies for (trans)dermal drug and vaccine delivery. , 2012, Journal of controlled release : official journal of the Controlled Release Society.

[195]  Bumkyoo Choi,et al.  Development of the MHD micropump with mixing function , 2011 .

[197]  B D Ratner,et al.  Glucose-sensitive membranes containing glucose oxidase: activity, swelling, and permeability studies. , 1985, Journal of biomedical materials research.

[198]  Sang Jun Moon,et al.  A novel fabrication method of a microneedle array using inclined deep x-ray exposure , 2005 .

[199]  Haripriya Kalluri,et al.  Formation and Closure of Microchannels in Skin Following Microporation , 2010, Pharmaceutical Research.

[200]  Pai-Chi Li,et al.  A Monolithic Three-Dimensional Ultrasonic Transducer Array for Medical Imaging , 2007, Journal of Microelectromechanical Systems.

[201]  Zhaoying Zhou,et al.  MEMS-based piezoelectric array microjet , 2003 .

[202]  X. Y. Ye,et al.  A novel thermally-actuated silicon micropump , 1997, 1997 International Symposium on Micromechanics and Human Science (Cat. No.97TH8311).

[203]  Masayoshi Esashi,et al.  Normally closed microvalve and mircopump fabricated on a silicon wafer , 1989 .

[204]  A. Stinchcomb,et al.  Diclofenac Enables Prolonged Delivery of Naltrexone Through Microneedle-Treated Skin , 2011, Pharmaceutical Research.

[205]  B. Ziaie,et al.  Top-down and bottom-up fabrication techniques for hydrogel based sensing and hormone delivery microdevices , 2009, 2009 Annual International Conference of the IEEE Engineering in Medicine and Biology Society.

[206]  Toyoichi Tanaka Collapse of Gels and the Critical Endpoint , 1978 .

[207]  Dhananjay Dendukuri,et al.  A route to three-dimensional structures in a microfluidic device: stop-flow interference lithography. , 2007, Angewandte Chemie.

[208]  Hongyan He,et al.  An oral delivery device based on self-folding hydrogels. , 2006, Journal of controlled release : official journal of the Controlled Release Society.

[209]  Joseph M DeSimone,et al.  Direct fabrication and harvesting of monodisperse, shape-specific nanobiomaterials. , 2005, Journal of the American Chemical Society.

[210]  Manfred Kohl,et al.  Linear microactuators based on the shape memory effect , 1997, Proceedings of International Solid State Sensors and Actuators Conference (Transducers '97).

[211]  Jin Fang,et al.  An osmotic micro-pump integrated on a microfluidic chip for perfusion cell culture. , 2010, Talanta.

[212]  Li Wang,et al.  Characteristics and fabrication of NiTi/Si diaphragm micropump , 2001 .

[213]  Nan-Chyuan Tsai,et al.  Review of MEMS-based drug delivery and dosing systems , 2007 .

[214]  O. Jeong,et al.  Fabrication and test of a thermopneumatic micropump with a corrugated p+ diaphragm , 2000 .

[215]  Chong H. Ahn,et al.  A tapered hollow metallic microneedle array using backside exposure of SU-8 , 2004 .

[216]  Edmond Sabo,et al.  Fear of injections in young adults: prevalence and associations. , 2003, The American journal of tropical medicine and hygiene.

[217]  Mark R. Prausnitz,et al.  Effect of Adjuvants on Responses to Skin Immunization by Microneedles Coated with Influenza Subunit Vaccine , 2012, PloS one.

[218]  E. Meng,et al.  A Parylene Bellows Electrochemical Actuator , 2010, Journal of Microelectromechanical Systems.

[219]  Tao Li,et al.  Compact, power-efficient architectures using microvalves and microsensors, for intrathecal, insulin, and other drug delivery systems. , 2012, Advanced drug delivery reviews.

[220]  Jung-Hwan Park,et al.  Biodegradable polymer microneedles: fabrication, mechanics and transdermal drug delivery , 2004, The 26th Annual International Conference of the IEEE Engineering in Medicine and Biology Society.

[221]  M. Kendall,et al.  Targeted, needle-free vaccinations in skin using multilayered, densely-packed dissolving microprojection arrays. , 2010, Small.

[222]  M. Prausnitz,et al.  Targeted administration into the suprachoroidal space using a microneedle for drug delivery to the posterior segment of the eye. , 2012, Investigative ophthalmology & visual science.

[223]  Ryan F. Donnelly,et al.  Microneedle-based drug delivery systems: Microfabrication, drug delivery, and safety , 2010, Drug delivery.

[224]  Dongshin Kim,et al.  A bi-polymer micro one-way valve , 2007 .

[225]  Kl L. Yung,et al.  Sharp tipped plastic hollow microneedle array by microinjection moulding , 2011 .

[226]  Nuria Sanvicens,et al.  Multifunctional nanoparticles--properties and prospects for their use in human medicine. , 2008, Trends in biotechnology.

[227]  N. Wilke,et al.  Process optimization and characterization of silicon microneedles fabricated by wet etch technology , 2005, Microelectron. J..

[228]  Wouter Olthuis,et al.  A closed-loop controlled electrochemically actuated micro-dosing system , 2000 .

[229]  Wijaya Martanto,et al.  Mechanism of fluid infusion during microneedle insertion and retraction. , 2006, Journal of controlled release : official journal of the Controlled Release Society.

[230]  C. Yamahata,et al.  Plastic micropumps using ferrofluid and magnetic membrane actuation , 2004, 17th IEEE International Conference on Micro Electro Mechanical Systems. Maastricht MEMS 2004 Technical Digest.

[231]  E. Meng,et al.  MEMS-enabled implantable drug infusion pumps for laboratory animal research, preclinical, and clinical applications. , 2012, Advanced drug delivery reviews.

[232]  Ali Khademhosseini,et al.  Microfabrication technologies for oral drug delivery. , 2012, Advanced drug delivery reviews.

[233]  S. Anna,et al.  Microfluidic methods for generating continuous droplet streams , 2007 .

[234]  M. Chiao,et al.  Microdevice-based delivery of gene products using sonoporation , 2007, Biomedical microdevices.

[235]  Christopher J. Backhouse,et al.  Ferrofluid-based microchip pump and valve , 2004 .

[236]  Mark G. Allen,et al.  Polymer Microneedles for Controlled-Release Drug Delivery , 2006, Pharmaceutical Research.

[237]  Melissa Ai Ling Teo,et al.  In Vitro and In Vivo Characterization of MEMS Microneedles , 2005, Biomedical microdevices.

[238]  J. Bouwstra,et al.  Improved piercing of microneedle arrays in dermatomed human skin by an impact insertion method. , 2008, Journal of controlled release : official journal of the Controlled Release Society.

[239]  Mark R Prausnitz,et al.  Coated microneedles for transdermal delivery. , 2007, Journal of controlled release : official journal of the Controlled Release Society.

[240]  Enrico Mach,et al.  FOR LOW POWER , 1997 .

[241]  Ellis Meng,et al.  A MEMS electrochemical bellows actuator for fluid metering applications , 2013, Biomedical microdevices.

[242]  Richard E. Eitel,et al.  Magnetic hydrogel nanocomposites as remote controlled microfluidic valves. , 2009, Lab on a chip.

[243]  Mark R. Prausnitz,et al.  Stability of influenza vaccine coated onto microneedles. , 2012, Biomaterials.

[244]  Jonathan J. Nagel,et al.  Magnetically actuated micropumps using an Fe-PDMS composite membrane , 2006, SPIE Smart Structures and Materials + Nondestructive Evaluation and Health Monitoring.

[245]  P. Crooks,et al.  Novel 3-O-pegylated carboxylate and 3-O-pegylated carbamate prodrugs of naltrexone for microneedle-enhanced transdermal delivery. , 2010, Bioorganic & medicinal chemistry letters.

[246]  Dhananjay Dendukuri,et al.  The Synthesis and Assembly of Polymeric Microparticles Using Microfluidics , 2009 .

[247]  B. Guichardaz,et al.  Investigations of development process of high hollow beveled microneedles using a combination of ICP RIE and dicing saw , 2008 .

[248]  F Levent Degertekin,et al.  Electrosonic ejector microarray for drug and gene delivery , 2008, Biomedical microdevices.

[249]  David H Gracias,et al.  3D lithographically fabricated nanoliter containers for drug delivery. , 2007, Advanced drug delivery reviews.

[250]  Toyoichi Tanaka,et al.  Collapse of Gels in an Electric Field , 1982, Science.

[251]  Robert Langer,et al.  Multi-pulse drug delivery from a resorbable polymeric microchip device , 2003, Nature materials.

[252]  L. Babiuk,et al.  Cutaneous vaccination: the skin as an immunologically active tissue and the challenge of antigen delivery. , 2000, Journal of controlled release : official journal of the Controlled Release Society.

[253]  A. Banga Microporation applications for enhancing drug delivery. , 2009, Expert opinion on drug delivery.

[254]  R. Siegel,et al.  Enhanced permeation of diazepam through artificial membranes from supersaturated solutions. , 2006, Journal of pharmaceutical sciences.

[255]  J. Birchall,et al.  Low temperature fabrication of biodegradable sugar glass microneedles for transdermal drug delivery applications. , 2012, Journal of controlled release : official journal of the Controlled Release Society.

[256]  David L. Kaplan,et al.  Fabrication of Silk Microneedles for Controlled‐Release Drug Delivery , 2012 .

[257]  Mark R Prausnitz,et al.  Precise microinjection into skin using hollow microneedles. , 2006, The Journal of investigative dermatology.

[258]  M. Prausnitz,et al.  Increased immunogenicity of avian influenza DNA vaccine delivered to the skin using a microneedle patch. , 2012, European journal of pharmaceutics and biopharmaceutics : official journal of Arbeitsgemeinschaft fur Pharmazeutische Verfahrenstechnik e.V.

[259]  N. J. Graf,et al.  A Soft-Polymer Piezoelectric Bimorph Cantilever-Actuated Peristaltic Micropump , 2009 .

[260]  Göran Stemme,et al.  Novel Microneedle Patches for Active Insulin Delivery are Efficient in Maintaining Glycaemic Control: An Initial Comparison with Subcutaneous Administration , 2007, Pharmaceutical Research.

[261]  U. O. Hafeli,et al.  Hollow Out-of-Plane Polymer Microneedles Made by Solvent Casting for Transdermal Drug Delivery , 2012, Journal of Microelectromechanical Systems.

[262]  Robert Langer,et al.  Microfluidic platform for controlled synthesis of polymeric nanoparticles. , 2008, Nano letters.

[263]  Kristy M Ainslie,et al.  Microfabricated devices for enhanced bioadhesive drug delivery: attachment to and small-molecule release through a cell monolayer under flow. , 2009, Small.

[264]  R. Siegel,et al.  Composite block polymer-microfabricated silicon nanoporous membrane. , 2009, ACS applied materials & interfaces.

[265]  Parminder Singh,et al.  Transdermal Delivery of Macromolecules Using Solid-State Biodegradable Microstructures , 2010, Pharmaceutical Research.

[266]  Henry,et al.  Microfabricated microneedles: A novel approach to transdermal drug delivery , 1999, Journal of pharmaceutical sciences.