Magneto-optical Kerr microscopy investigation of magnetization reversal in Co2FeSi Heusler alloy thin films

Magneto-optical Kerr effect microscopy investigation of magnetocrystalline anisotropy and the magnetization reversal (MR) process in Co2FeSi (CFS) Heusler alloy thin films reveals the following: Regardless of the strength of the anti-site atomic disorder, all CFS films of fixed thickness (t = 50 nm) exhibit variations in the remanent magnetization (Mr) and coercive field (Hc) with the “in-plane” magnetic field (H) angle, φH, that are characteristic of the “in-plane” uniaxial anisotropy (UA) with an easy axis along φH = 0°. The observed variations with the field-angle are well described by the two-phase pinning (TP) model. Exceptions to this rule are the films with t ≥ 25 nm, having a maximum B2 atomic order, which show completely different angular variations in Mr and Hc. In such exceptional cases, we find that the TP model reproduces Mr(φH) and Hc(φH) only when it takes into account two mutually exclusive UAs, UA1 and UA2, with easy axes perpendicular to one another and UA1 ≫ UA2. When H points along the easy axis (φH = 0°), MR in all CFS films proceeds through the nucleation of reverse domains and their subsequent growth by domain wall movement as H increases. Atomic disorder has essentially no effect on the MR process, but the domain wall pinning at defects/imperfections affects the magnitudes of Hc and the UA field, Hk. At φH ≃ 45°, MR takes place through the formation of ripple domains. As H increases, the reverse domains grow at the expense of ripple domains, and a single domain configuration is established at high fields. When φH = 90°, MR in all films involves nucleation and subsequent growth of reverse domains by the field-induced movement of the 180° domain walls.

[1]  M. M. Raja,et al.  Uniaxial anisotropy, intrinsic and extrinsic damping in Co2FeSi Heusler alloy thin films , 2019, Journal of Physics D: Applied Physics.

[2]  M. M. Raja,et al.  Diffuson contribution to anomalous Hall effect in disordered Co2FeSi thin films , 2018, Journal of Magnetism and Magnetic Materials.

[3]  S. Chaudhary,et al.  Growth dependent magnetization reversal in Co2MnAl full Heusler alloy thin films , 2018 .

[4]  M. M. Raja,et al.  Evidence for the absence of electron-electron Coulomb interaction quantum correction to the anomalous Hall effect in Co 2 FeSi Heusler-alloy thin films , 2017 .

[5]  V. Jayalakshmi,et al.  Magnetic anisotropy and microscopy studies in magnetostrictive Tb-(Fe,Co) thin films , 2017 .

[6]  S. Bedanta,et al.  Effect of the growth conditions on the anisotropy, domain structures and the relaxation in Co thin films , 2017 .

[7]  G. Reiss,et al.  Low Gilbert damping in Co2FeSi and Fe2CoSi films , 2016, 1605.06797.

[8]  H. Zabel,et al.  Domain wall dynamics of periodic magnetic domain patterns in Co2MnGe-Heusler microstripes , 2016 .

[9]  M. Belmeguenai,et al.  Correlations between structural, electronic transport, and magnetic properties of Co 2 FeAl 0.5 Si 0.5 Heusler alloy epitaxial thin films , 2015 .

[10]  W. Kleemann,et al.  Controlling the size and relaxation dynamics of superferromagnetic domains , 2015 .

[11]  Jianhua Zhao,et al.  Temperature dependent magnetic anisotropy of epitaxial Co2FeAl films grown on GaAs , 2015 .

[12]  F. Bohn,et al.  Quantifying magnetic anisotropy dispersion: Theoretical and experimental study of the magnetic properties of anisotropic FeCuNbSiB ferromagnetic films , 2014, 1412.0563.

[13]  Jianhua Zhao,et al.  The thickness-dependent dynamic magnetic property of Co2FeAl films grown by molecular beam epitaxy , 2014 .

[14]  S. Bedanta,et al.  Interplay of uniaxial and cubic anisotropy in epitaxial Fe thin films on MgO (001) substrate , 2014 .

[15]  M. Belmeguenai,et al.  Magnetic and structural properties of Co2FeAl thin films grown on Si substrate , 2014, 1403.7566.

[16]  B. Hillebrands,et al.  Magnetization reversal of in-plane uniaxial Co films and its dependence on epitaxial alignment , 2014 .

[17]  S. Bedanta,et al.  Controlling the anisotropy and domain structure with oblique deposition and substrate rotation , 2014, 2015 IEEE Magnetics Conference (INTERMAG).

[18]  M. Belmeguenai,et al.  Co2FeAl Heusler thin films grown on Si and MgO substrates: Annealing temperature effect , 2014, 1401.4397.

[19]  Wei He,et al.  Determination of magnetic anisotropy constants in Fe ultrathin film on vicinal Si(111) by anisotropic magnetoresistance , 2013, Scientific Reports.

[20]  Wei He,et al.  Tuning magnetic anisotropies of Fe films on Si(111) substrate via direction variation of heating current , 2013, Scientific Reports.

[21]  P. Vavassori,et al.  Collapse of hard-axis behavior in uniaxial Co films , 2011 .

[22]  M. Hehn,et al.  Magnetic and structural anisotropies of Co 2 FeAl Heusler alloy epitaxial thin films , 2011, 1108.4043.

[23]  B. Hillebrands,et al.  Effect of annealing on Co 2 FeAl 0.5 Si 0.5 thin films: A magneto-optical and x-ray absorption study , 2011 .

[24]  D. Blank,et al.  Magnetic anisotropy and magnetization reversal of La0.67Sr0.33MnO3 thin films on SrTiO3(110) , 2010 .

[25]  T. Chauveau,et al.  Structural, static and dynamic magnetic properties of CoMnGe thin films on a sapphire a-plane substrate , 2010, 1005.4595.

[26]  M. Miyao,et al.  Significant growth-temperature dependence of ferromagnetic properties for Co2FeSi/Si"111… prepared by low-temperature molecular beam epitaxy , 2010 .

[27]  D. Blank,et al.  Magnetization reversal mechanism in La0.67Sr0.33MnO3 thin films on NdGaO3 substrates , 2010 .

[28]  M. Sousa,et al.  Enhanced uniaxial magnetic anisotropy in Fe31Co69 thin films on GaAs(001) , 2008 .

[29]  J. Gieraltowski,et al.  A Stoner–Wohlfarth model Redux: Static properties , 2008 .

[30]  S. J. Hermsdoerfer,et al.  Influence of the L21 ordering degree on the magnetic properties of Co2MnSi Heusler films , 2007, 0708.3303.

[31]  A. Locatelli,et al.  Tuning the domain wall orientation in thin magnetic strips using induced anisotropy , 2007, 0706.3106.

[32]  R. Mattheis,et al.  Kerr observations of asymmetric magnetization reversal processes in CoFe/IrMn bilayer systems , 2003 .

[33]  N. Tournerie,et al.  Interplay between anisotropic strain relaxation and uniaxial interface magnetic anisotropy in epitaxial Fe films on (001) GaAs. , 2003, Physical review letters.

[34]  N. P. Suponev,et al.  Angular dependence of coercive field in (Sm,Zr) (Co,Cu,Fe)z alloys , 1996 .

[35]  F. Schumacher On the modification of the Kondorsky function , 1991 .

[36]  M. S. Cohen,et al.  Oblique‐Incidence Anisotropy in Evaporated Permalloy Films , 1960 .

[37]  L. Néel,et al.  On the Laws of Magnetization of Ferromagnetic Single Crystals and Polycrystals. Application to Uniaxial Compounds , 1960 .

[38]  E. Wohlfarth,et al.  A mechanism of magnetic hysteresis in heterogeneous alloys , 1948, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.