Conjugated‐Polymer‐Based Lateral Heterostructures Defined by High‐Resolution Photolithography

Solution processing of polymer semiconductors provides a new paradigm for large‐area electronics manufacturing on flexible substrates, but it also severely restricts the realization of interesting advanced device architectures, such as lateral heterostructures with defined interfaces, which are easily accessible with inorganic materials using photolithography. This is because polymer semiconductors degrade, swell, or dissolve during conventional photoresist processing. Here a versatile, high‐resolution photolithographic method is demonstrated for patterning of polymer semiconductors and exemplify this with high‐performance p‐type and n‐type field‐effect transistors (FETs) in both bottom‐ and top‐gate architectures, as well as ambipolar light‐emitting field‐effect transistors (LEFETs), in which the recombination zone can be pinned at a photolithographically defined lateral heterojunction between two semiconducting polymers. The technique therefore enables the realization of a broad range of novel device architectures while retaining optimum materials performance.

[1]  H. Katz,et al.  Field-effect-tuned lateral organic diodes , 2010, Proceedings of the National Academy of Sciences.

[2]  H. Sirringhaus,et al.  Polaron Localization at Interfaces in High‐Mobility Microcrystalline Conjugated Polymers , 2009 .

[3]  G. Fortunato,et al.  Pentacene TFTs with parylene passivation layer , 2009 .

[4]  H. Sirringhaus,et al.  Integration of a Rib Waveguide Distributed Feedback Structure into a Light‐Emitting Polymer Field‐Effect Transistor , 2009 .

[5]  Daniel Moses,et al.  Low Thresholds in Polymer Lasers on Conductive Substrates by Distributed Feedback Nanoimprinting: Progress Toward Electrically Pumped Plastic Lasers , 2009 .

[6]  T. Jackson,et al.  Direct lithographic top contacts for pentacene organic thin-film transistors , 2009 .

[7]  A. Facchetti,et al.  A high-mobility electron-transporting polymer for printed transistors , 2009, Nature.

[8]  J. Moon,et al.  Encapsulation of organic light-emitting devices using a perfluorinated polymer , 2008 .

[9]  W. Huck,et al.  Surface‐Directed Phase Separation of Conjugated Polymer Blends for Efficient Light‐Emitting Diodes , 2008 .

[10]  George G. Malliaras,et al.  Hydrofluoroethers as Orthogonal Solvents for the Chemical Processing of Organic Electronic Materials , 2008 .

[11]  David Beljonne,et al.  Optoelectronic and charge transport properties at organic-organic semiconductor interfaces: comparison between polyfluorene-based polymer blend and copolymer. , 2008, Journal of the American Chemical Society.

[12]  Richard H. Friend,et al.  Efficient Conjugated‐Polymer Optoelectronic Devices Fabricated by Thin‐Film Transfer‐Printing Technique , 2008 .

[13]  H. Sirringhaus,et al.  Quantum efficiency of ambipolar light-emitting polymer field-effect transistors , 2008 .

[14]  Jan Genoe,et al.  An Organic Light‐Emitting Diode with Field‐Effect Electron Transport , 2008 .

[15]  Arne Hoppe,et al.  Electrical stability of pentacene thin film transistors , 2007 .

[16]  K. Matsushige,et al.  Novel organic light-emitting transistors with PN-heteroboundary carrier recombination sites fabricated by lift-off patterning of organic semiconductor thin films , 2007 .

[17]  Henrique L. Gomes,et al.  Dynamics of Threshold Voltage Shifts in Organic and Amorphous Silicon Field‐Effect Transistors , 2007 .

[18]  C. Adachi,et al.  Extremely Low‐Threshold Amplified Spontaneous Emission of 9,9′‐Spirobifluorene Derivatives and Electroluminescence from Field‐Effect Transistor Structure , 2007 .

[19]  John A Rogers,et al.  Micro- and nanopatterning techniques for organic electronic and optoelectronic systems. , 2007, Chemical reviews.

[20]  A. Song,et al.  Non-destructive patterning of conducting-polymer devices using subtractive photolithography , 2006 .

[21]  P. Heremans,et al.  Light-emitting organic field-effect transistor using an organic heterostructure within the transistor channel , 2006 .

[22]  M. Muccini A bright future for organic field-effect transistors , 2006, Nature materials.

[23]  Maxim Shkunov,et al.  Liquid-crystalline semiconducting polymers with high charge-carrier mobility , 2006, Nature materials.

[24]  Alan J. Heeger,et al.  Light emission from an ambipolar semiconducting polymer field-effect transistor , 2005, SPIE OPTO.

[25]  H. Sirringhaus,et al.  Effects of packing structure on the optoelectronic and charge transport properties in poly(9,9-di-n-octylfluorene-alt-benzothiadiazole). , 2005, Journal of the American Chemical Society.

[26]  Michele Muccini,et al.  Light-emitting ambipolar organic heterostructure field-effect transistor , 2004 .

[27]  Robert A. Street,et al.  All jet-printed polymer thin-film transistor active-matrix backplanes , 2004 .

[28]  Janos Veres,et al.  Gate Insulators in Organic Field-Effect Transistors , 2004 .

[29]  Toshihide Kamata,et al.  Influence of moisture on device characteristics of polythiophene-based field-effect transistors , 2004 .

[30]  R. Friend,et al.  Phase Separation in Polyfluorene-Based Conjugated Polymer Blends: Lateral and Vertical Analysis of Blend Spin-Cast Thin Films , 2004 .

[31]  Richard H. Friend,et al.  Barrier‐Free Electron–Hole Capture in Polymer Blend Heterojunction Light‐Emitting Diodes , 2003 .

[32]  Sampath Purushothaman,et al.  Patterning pentacene organic thin film transistors , 2002 .

[33]  R. Friend,et al.  Nature of Non-emissive Black Spots in Polymer Light-Emitting Diodes by In-Situ Micro-Raman Spectroscopy , 2002 .

[34]  H. Sirringhaus,et al.  High-Resolution Ink-Jet Printing of All-Polymer Transistor Circuits , 2000, Science.

[35]  Steven Holdcroft,et al.  INTERACTION OF OXYGEN WITH CONJUGATED POLYMERS : CHARGE TRANSFER COMPLEX FORMATION WITH POLY(3-ALKYLTHIOPHENES) , 1997 .

[36]  Richard H. Friend,et al.  Spatial control of the recombination zone in an ambipolar light-emitting organic transistor , 2006 .