Local metrical and global topological maps in the hybrid spatial semantic hierarchy

Topological and metrical methods for representing spatial knowledge have complementary strengths. We present a hybrid extension to the spatial semantic hierarchy that combines their strengths and avoids their weaknesses. Metrical SLAM methods are used to build local maps of small-scale space within the sensory horizon of the agent, while topological methods are used to represent the structure of large-scale space. We describe how a local perceptual map is analyzed to identify a local topology description and is abstracted to a topological place. The map building method creates a set of topological map hypotheses that are consistent with travel experience. The set of maps is guaranteed under reasonable assumptions to include the correct map. We demonstrate the method on a real environment with multiple nested large-scale loops.

[1]  David Kortenkamp,et al.  Prototypes, Location, and Associative Networks (PLAN): Towards a Unified Theory of Cognitive Mapping , 1995, Cogn. Sci..

[2]  Roland Siegwart,et al.  Hybrid simultaneous localization and map building: closing the loop with multi-hypotheses tracking , 2002, Proceedings 2002 IEEE International Conference on Robotics and Automation (Cat. No.02CH37292).

[3]  Sebastian Thrun,et al.  Probabilistic Algorithms in Robotics , 2000, AI Mag..

[4]  Michael Bosse,et al.  An Atlas framework for scalable mapping , 2003, 2003 IEEE International Conference on Robotics and Automation (Cat. No.03CH37422).

[5]  Benjamin Kuipers,et al.  The Spatial Semantic Hierarchy , 2000, Artif. Intell..

[6]  M. Benedikt,et al.  To Take Hold of Space: Isovists and Isovist Fields , 1979 .

[7]  Wolfram Burgard,et al.  Monte Carlo Localization with Mixture Proposal Distribution , 2000, AAAI/IAAI.

[8]  John J. Leonard,et al.  Consistent, Convergent, and Constant-Time SLAM , 2003, IJCAI.

[9]  Vladimir Lifschitz,et al.  Nested Abnormality Theories , 1995, Artif. Intell..

[10]  Axel Lankenau,et al.  Self-localization in Large-Scale Environments for the Bremen Autonomous Wheelchair , 2003, Spatial Cognition.

[11]  Benjamin Kuipers,et al.  Towards a general theory of topological maps , 2004, Artif. Intell..

[12]  Benjamin Kuipers,et al.  Loop-closing and planarity in topological map-building , 2004, 2004 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (IEEE Cat. No.04CH37566).

[13]  Gregory Dudek,et al.  Using Local Information in a Non-Local Way for Mapping Graph-Like Worlds , 1993, IJCAI.

[14]  Keiji Nagatani,et al.  Topological simultaneous localization and mapping (SLAM): toward exact localization without explicit localization , 2001, IEEE Trans. Robotics Autom..

[15]  Wai-Kiang Yeap,et al.  Computing a Representation of the Local Environment , 1999, Artif. Intell..

[16]  A. Saffiotti,et al.  Building Globally Consistent Gridmaps from Topologies , 2000 .

[17]  Sebastian Thrun,et al.  Learning Metric-Topological Maps for Indoor Mobile Robot Navigation , 1998, Artif. Intell..

[18]  Ronald Parr,et al.  DP-SLAM: Fast, Robust Simultaneous Localization and Mapping Without Predetermined Landmarks , 2003, IJCAI.

[19]  Wolfram Burgard,et al.  An efficient fastSLAM algorithm for generating maps of large-scale cyclic environments from raw laser range measurements , 2003, Proceedings 2003 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2003) (Cat. No.03CH37453).

[20]  Joseph Modayil,et al.  Exploiting Local Perceptual Models for Topological Map-Building , 2003 .

[21]  Benjamin Kuipers,et al.  A Logical Account of Causal and Topological Maps , 2001, IJCAI.

[22]  Mark A. Paskin,et al.  Thin Junction Tree Filters for Simultaneous Localization and Mapping , 2002, IJCAI.

[23]  Sebastian Thrun,et al.  FastSLAM 2.0: An Improved Particle Filtering Algorithm for Simultaneous Localization and Mapping that Provably Converges , 2003, IJCAI.

[24]  Benjamin Kuipers,et al.  A robot exploration and mapping strategy based on a semantic hierarchy of spatial representations , 1991, Robotics Auton. Syst..