A new framework for on-line object tracking based on SURF

We present a new object tracking scheme by employing adaptive classifiers to match the corresponding keypoints between consecutive frames. The detection of interest points is a critical step in obtaining robust local descriptions. This paper proposes an efficient feature detector based on SURF, by incrementally predicting the search space, to enhance the repeatability of the tracked interest points. Instead of computing the SURF descriptor, we construct a classifier-based descriptor using on-line boosting. With on-line learning ability based on our sample weighting mechanism, the classifier maintains its discriminative power to establish robust feature description and reliable points matching for subsequent tracking. In addition, matching candidates are validated using improved RANSAC to ensure correct updates and accurate tracking. All of these ingredients contribute measurably to improving overall tracking performance. Experimental results demonstrate the robustness and accuracy of our proposed technique.

[1]  Hans P. Moravec Towards Automatic Visual Obstacle Avoidance , 1977, IJCAI.

[2]  Shai Avidan,et al.  Ensemble Tracking , 2005, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[3]  Horst Bischof,et al.  Semi-supervised boosting using visual similarity learning , 2008, 2008 IEEE Conference on Computer Vision and Pattern Recognition.

[4]  Paul A. Viola,et al.  Rapid object detection using a boosted cascade of simple features , 2001, Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. CVPR 2001.

[5]  Vincent Lepetit,et al.  Keypoint recognition using randomized trees , 2006, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[6]  Matthijs C. Dorst Distinctive Image Features from Scale-Invariant Keypoints , 2011 .

[7]  H. Opower Multiple view geometry in computer vision , 2002 .

[8]  Paul A. Viola,et al.  Robust Real-Time Face Detection , 2001, Proceedings Eighth IEEE International Conference on Computer Vision. ICCV 2001.

[9]  Luc Van Gool,et al.  Speeded-Up Robust Features (SURF) , 2008, Comput. Vis. Image Underst..

[10]  Tony Lindeberg,et al.  Feature Detection with Automatic Scale Selection , 1998, International Journal of Computer Vision.

[11]  Yoav Freund,et al.  A decision-theoretic generalization of on-line learning and an application to boosting , 1995, EuroCOLT.

[12]  Christopher G. Harris,et al.  A Combined Corner and Edge Detector , 1988, Alvey Vision Conference.

[13]  Hans P. Morevec Towards automatic visual obstacle avoidance , 1977, IJCAI 1977.

[14]  Paul A. Viola,et al.  Boosting Image Retrieval , 2000, Proceedings IEEE Conference on Computer Vision and Pattern Recognition. CVPR 2000 (Cat. No.PR00662).

[15]  Jiri Matas,et al.  Matching with PROSAC - progressive sample consensus , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05).

[16]  Vincent Lepetit,et al.  Randomized trees for real-time keypoint recognition , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05).

[17]  Horst Bischof,et al.  Learning Features for Tracking , 2007, 2007 IEEE Conference on Computer Vision and Pattern Recognition.

[18]  Yanxi Liu,et al.  Online Selection of Discriminative Tracking Features , 2005, IEEE Trans. Pattern Anal. Mach. Intell..

[19]  Ivan Laptev,et al.  Improvements of Object Detection Using Boosted Histograms , 2006, BMVC.

[20]  Guijin Wang,et al.  Scale and rotation invariant feature-based object tracking via modified on-line boosting , 2010, 2010 IEEE International Conference on Image Processing.

[21]  Stuart J. Russell,et al.  Experimental comparisons of online and batch versions of bagging and boosting , 2001, KDD '01.

[22]  Jing Li,et al.  A comprehensive review of current local features for computer vision , 2008, Neurocomputing.

[23]  C. Schmid,et al.  Indexing based on scale invariant interest points , 2001, Proceedings Eighth IEEE International Conference on Computer Vision. ICCV 2001.

[24]  Rakesh Gupta,et al.  Multiple View Feature Descriptors from Image Sequences via Kernel Principal Component Analysis , 2004, ECCV.

[25]  Natasha Gelfand,et al.  SURFTrac: Efficient tracking and continuous object recognition using local feature descriptors , 2009, CVPR.

[26]  Luc Van Gool,et al.  SURF: Speeded Up Robust Features , 2006, ECCV.

[27]  Horst Bischof,et al.  Semi-supervised On-Line Boosting for Robust Tracking , 2008, ECCV.

[28]  Horst Bischof,et al.  On-line Boosting and Vision , 2006, 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06).

[29]  Jiri Matas,et al.  Robust wide-baseline stereo from maximally stable extremal regions , 2004, Image Vis. Comput..

[30]  Vinod Nair,et al.  An unsupervised, online learning framework for moving object detection , 2004, CVPR 2004.

[31]  Shai Avidan,et al.  Support Vector Tracking , 2001, Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. CVPR 2001.

[32]  Matthew A. Brown,et al.  Automatic Panoramic Image Stitching using Invariant Features , 2007, International Journal of Computer Vision.

[33]  Jiri Matas,et al.  Weighted Sampling for Large-Scale Boosting , 2008, BMVC.

[34]  P. Schönemann On artificial intelligence , 1985, Behavioral and Brain Sciences.