Brain MRI lesion load quantification in multiple sclerosis: a comparison between automated multispectral and semi-automated thresholding computer-assisted techniques.

[1]  Peter E. Hart,et al.  Nearest neighbor pattern classification , 1967, IEEE Trans. Inf. Theory.

[2]  D. Silberberg,et al.  New diagnostic criteria for multiple sclerosis: Guidelines for research protocols , 1983, Annals of neurology.

[3]  William H. Press,et al.  Numerical recipes in C. The art of scientific computing , 1987 .

[4]  J Toriwaki,et al.  Automatic segmentation of head MRI images by knowledge guided thresholding. , 1991, Computerized medical imaging and graphics : the official journal of the Computerized Medical Imaging Society.

[5]  T Sandor,et al.  Segmentation of brain CT images using the concept of region growing. , 1991, International journal of bio-medical computing.

[6]  J. Friedman,et al.  Quantitative MRI studies for assessment of multiple sclerosis , 1992, Magnetic resonance in medicine.

[7]  D. Paty,et al.  Interferon beta‐1b is effective in relapsing‐remitting multiple sclerosis , 1993, Neurology.

[8]  R. Edelman,et al.  Magnetic resonance imaging (2) , 1993, The New England journal of medicine.

[9]  RF coil optimization: evaluation of B1 field homogeneity using field histograms and finite element calculations. , 1994, Magnetic resonance imaging.

[10]  R. Knobler,et al.  Distributional Patterns of Multiple Sclerosis Brain Lesions Magnetic Resonance ImagingClinical Correlation , 1994, Journal of neuroimaging : official journal of the American Society of Neuroimaging.

[11]  A. Fenster,et al.  Computer‐assisted identification and quantification of multiple sclerosis lesions in MR imaging volumes in the brain , 1994, Journal of magnetic resonance imaging : JMRI.

[12]  D. Collins,et al.  Automatic 3D Intersubject Registration of MR Volumetric Data in Standardized Talairach Space , 1994, Journal of computer assisted tomography.

[13]  B M Dawant,et al.  Brain segmentation and white matter lesion detection in MR images. , 1994, Critical reviews in biomedical engineering.

[14]  B. Ardekani,et al.  Automatic Detection of Intradural Spaces in MR Images , 1994, Journal of computer assisted tomography.

[15]  D. Louis Collins,et al.  Model-based 3-D segmentation of multiple sclerosis lesions in magnetic resonance brain images , 1995, IEEE Trans. Medical Imaging.

[16]  M. Horsfield,et al.  Quantitative assessment of MRI lesion load in monitoring the evolution of multiple sclerosis. , 1995, Brain : a journal of neurology.

[17]  M. Horsfield,et al.  Intra- and inter-observer agreement of brain MRI lesion volume measurements in multiple sclerosis. A comparison of techniques. , 1995, Brain : a journal of neurology.

[18]  G. Barker,et al.  Quantification of MRI lesion load in multiple sclerosis: a comparison of three computer-assisted techniques. , 1996, Magnetic resonance imaging.

[19]  M. Stella Atkins,et al.  Segmentation of multiple sclerosis lesions in intensity corrected multispectral MRI , 1996, IEEE Trans. Medical Imaging.

[20]  R. Knobler,et al.  Improved intracranial lesion characterization by tissue segmentation based on a 3D feature map , 1997, Magnetic resonance in medicine.

[21]  Supun Samarasekera,et al.  Multiple sclerosis lesion quantification using fuzzy-connectedness principles , 1997, IEEE Transactions on Medical Imaging.

[22]  J H Simon,et al.  Computerized method of lesion volume quantitation in multiple sclerosis: error of serial studies. , 1997, AJNR. American journal of neuroradiology.

[23]  S. Reingold,et al.  The role of magnetic resonance techniques in understanding and managing multiple sclerosis. , 1998, Brain : a journal of neurology.

[24]  D. Louis Collins,et al.  Design and construction of a realistic digital brain phantom , 1998, IEEE Transactions on Medical Imaging.

[25]  M. Stella Atkins,et al.  Fully automatic segmentation of the brain in MRI , 1998, IEEE Transactions on Medical Imaging.

[26]  G. Barker,et al.  Precision and reliability for measurement of change in MRI lesion volume in multiple sclerosis: a comparison of two computer assisted techniques , 1998, Journal of neurology, neurosurgery, and psychiatry.

[27]  Variations on the slotted-tube resonator: rectangular and elliptical coils. , 1999, Magnetic resonance imaging.

[28]  Ole Vilhelm Larsen,et al.  Screening for diabetic retinopathy using computer based image analysis and statistical classification , 2000, Comput. Methods Programs Biomed..

[29]  M Rovaris,et al.  Intra-observer, inter-observer and inter-scanner variations in brain MRI volume measurements in multiple sclerosis , 2001, Multiple sclerosis.

[30]  Koenraad Van Leemput,et al.  Automated segmentation of multiple sclerosis lesions by model outlier detection , 2001, IEEE Transactions on Medical Imaging.

[31]  Richard A. C. Hughes,et al.  PRISMS-4: Long-term efficacy of interferon-&bgr;-1a in relapsing MS , 2001, Neurology.

[32]  Jouko Lampinen,et al.  Bayesian approach for neural networks--review and case studies , 2001, Neural Networks.

[33]  W. Heiss,et al.  New diagnostic criteria for multiple sclerosis , 2002, Annals of neurology.

[34]  D. Miller,et al.  Volume measurement of multiple sclerosis lesions with magnetic resonance images , 1992, Neuroradiology.