Optical Spectra of p-Doped PEDOT Nanoaggregates Provide Insight into the Material Disorder

Highly doped poly(3,4-ethylenedioxythiophene), or PEDOT, is a conductive polymer with a wide range of applications in energy conversion due to its ease of processing, optical properties, and high conductivity. The latter is influenced by processing conditions, including formulation, annealing, and solvent treatment of the polymer, which also affects the polymer arrangement. Here, we show that the analysis of the optical spectra of PEDOT domains reveals the nature and magnitude of the structural disorder in the material. In particular, the optical spectra of objects on individual domains can be used for elucidation of molecular disorder in an oligomer arrangement, which is a key factor affecting the conductivity.

[1]  Thomas Hellman PHIL , 2018, Encantado.

[2]  R. Goldsmith,et al.  Chip‐Scale Fabrication of High‐Q All‐Glass Toroidal Microresonators for Single‐Particle Label‐Free Imaging , 2016, Advanced materials.

[3]  S. Shaheen,et al.  Optical Measurements Revealing Nonuniform Hole Mobility in Organic Electrochemical Transistors , 2015 .

[4]  X. Crispin,et al.  Ionic Seebeck Effect in Conducting Polymers , 2015 .

[5]  Furkan H. Isikgor,et al.  Review on application of PEDOTs and PEDOT:PSS in energy conversion and storage devices , 2015, Journal of Materials Science: Materials in Electronics.

[6]  Qingshuo Wei,et al.  Recent Progress on PEDOT-Based Thermoelectric Materials , 2015, Materials.

[7]  M. R. Molla,et al.  How does PEDOT combine with PSS? Insights from structural studies , 2014 .

[8]  W. Lövenich,et al.  PEDOT-properties and applications , 2014, Polymer Science Series C.

[9]  H. van Amerongen,et al.  Natural strategies for photosynthetic light harvesting , 2014, Nature Chemical Biology.

[10]  Bo Gong,et al.  Highly Conductive and Conformal Poly(3,4-ethylenedioxythiophene) (PEDOT) Thin Films via Oxidative Molecular Layer Deposition , 2014 .

[11]  M. Sung,et al.  Single-crystal poly(3,4-ethylenedioxythiophene) nanowires with ultrahigh conductivity. , 2014, Nano letters.

[12]  Randall H Goldsmith,et al.  Photothermal Microscopy of Nonluminescent Single Particles Enabled by Optical Microresonators. , 2014, The journal of physical chemistry letters.

[13]  Carlos Silva,et al.  H- and J-aggregate behavior in polymeric semiconductors. , 2014, Annual review of physical chemistry.

[14]  Patrice Rannou,et al.  Improvement of the Seebeck coefficient of PEDOT:PSS by chemical reduction combined with a novel method for its transfer using free-standing thin films , 2014 .

[15]  D. V. Vanden Bout,et al.  Unraveling the chromophoric disorder of poly(3-hexylthiophene) , 2013, Proceedings of the National Academy of Sciences.

[16]  Jennifer C. Brookes,et al.  Atomistic study of energy funneling in the light-harvesting complex of green sulfur bacteria. , 2013, Journal of the American Chemical Society.

[17]  Kurt Hingerl,et al.  Surface morphology, optical properties and conductivity changes of poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) by using additives☆ , 2013, Thin solid films.

[18]  Semion K. Saikin,et al.  Photonics meets excitonics: natural and artificial molecular aggregates , 2013, 1304.0124.

[19]  G. Scholes,et al.  Measures and implications of electronic coherence in photosynthetic light-harvesting , 2012, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[20]  Y. Qiao,et al.  Self-assembled hierarchical micro/nano-structured PEDOT as an efficient oxygen reduction catalyst over a wide pH range , 2012 .

[21]  Hiroyasu Masunaga,et al.  PEDOT Nanocrystal in Highly Conductive PEDOT:PSS Polymer Films , 2012 .

[22]  M. Yung,et al.  Exciton transport in thin-film cyanine dye J-aggregates. , 2012, The Journal of chemical physics.

[23]  L. Ojamäe,et al.  The electronic structure and reflectivity of PEDOT:PSS from density functional theory , 2011 .

[24]  X. Crispin,et al.  Optimization of the thermoelectric figure of merit in the conducting polymer poly(3,4-ethylenedioxythiophene). , 2011, Nature materials.

[25]  Benjamin C. K. Tee,et al.  Stretchable Organic Solar Cells , 2011, Advanced materials.

[26]  Mario Leclerc,et al.  Conducting polymers: Efficient thermoelectric materials , 2011 .

[27]  Antonio Facchetti,et al.  π-Conjugated Polymers for Organic Electronics and Photovoltaic Cell Applications† , 2011 .

[28]  Jinghang Wu,et al.  The Morphology of Poly(3,4-Ethylenedioxythiophene) , 2010 .

[29]  Chain‐Shu Hsu,et al.  Synthesis of conjugated polymers for organic solar cell applications. , 2009, Chemical reviews.

[30]  Jean-Luc Brédas,et al.  Electronic evolution of poly(3,4-ethylenedioxythiophene) (PEDOT): from the isolated chain to the pristine and heavily doped crystals. , 2008, Journal of the American Chemical Society.

[31]  Maria Forsyth,et al.  High Rates of Oxygen Reduction over a Vapor Phase–Polymerized PEDOT Electrode , 2008, Science.

[32]  D. Beljonne,et al.  Modeling of the solid-state packing of charged chains (PEDOT) in the presence of the counterions (TSA) and the solvent (DEG) , 2008 .

[33]  P. Barbara,et al.  Single-molecule spectroscopy of conjugated polymers. , 2005, Accounts of chemical research.

[34]  Stephen R. Forrest,et al.  The path to ubiquitous and low-cost organic electronic appliances on plastic , 2004, Nature.

[35]  William R. Salaneck,et al.  Conductivity, morphology, interfacial chemistry, and stability of poly(3,4‐ethylene dioxythiophene)–poly(styrene sulfonate): A photoelectron spectroscopy study , 2003 .

[36]  J. Reynolds,et al.  Electrochemistry of Poly(3,4‐alkylenedioxythiophene) Derivatives , 2003 .

[37]  J. Brédas,et al.  Theoretical investigation of the nature of the ground state in the low-bandgap conjugated polymer, poly(3,4-ethylenedioxythiophene) , 2002 .

[38]  J. Brédas,et al.  Optical and redox properties of a series of 3,4-ethylenedioxythiophene oligomers. , 2002, Chemistry.

[39]  J. Reynolds,et al.  Poly(3,4‐ethylenedioxythiophene) and Its Derivatives: Past, Present, and Future , 2000 .

[40]  Jiang,et al.  Two-dimensional electronic excitations in self-assembled conjugated polymer nanocrystals , 2000, Science.

[41]  F. Spano,et al.  H- and J-aggregates of conjugated polymers and oligomers: A theoretical investigation , 1999 .

[42]  L. Pettersson,et al.  Structure of thin films of poly(3,4-ethylenedioxythiophene) , 1999 .

[43]  J. Brédas,et al.  Polarons, bipolarons, and solitons in conducting polymers , 1985 .

[44]  D. L. Dexter A Theory of Sensitized Luminescence in Solids , 1953 .

[45]  Antje Winkel,et al.  Modern Quantum Chemistry , 2016 .

[46]  William W. Parson,et al.  Light-Harvesting Antennas in Photosynthesis , 2003, Advances in Photosynthesis and Respiration.

[47]  J. Herskowitz,et al.  Proceedings of the National Academy of Sciences, USA , 1996, Current Biology.

[48]  R. H. Peters Polymer Science , 1968, Nature.

[49]  Th. Förster Zwischenmolekulare Energiewanderung und Fluoreszenz , 1948 .