Altered directed functional connectivity in temporal lobe epilepsy in the absence of interictal spikes: A high density EEG study

In patients with epilepsy, seizure relapse and behavioral impairments can be observed despite the absence of interictal epileptiform discharges (IEDs). Therefore, the characterization of pathologic networks when IEDs are not present could have an important clinical value. Using Granger‐causal modeling, we investigated whether directed functional connectivity was altered in electroencephalography (EEG) epochs free of IED in left and right temporal lobe epilepsy (LTLE and RTLE) compared to healthy controls.

[1]  D. Fujikawa,et al.  Status Epilepticus–Induced Neuronal Loss in Humans Without Systemic Complications or Epilepsy , 2000, Epilepsia.

[2]  Huafu Chen,et al.  Default mode network abnormalities in mesial temporal lobe epilepsy: A study combining fMRI and DTI , 2011, Human brain mapping.

[3]  J. Foong,et al.  Temporal lobe epilepsy and affective disorders: the role of the subgenual anterior cingulate cortex , 2014, Journal of Neurology, Neurosurgery & Psychiatry.

[4]  Baxter P. Rogers,et al.  Evolution of Functional Connectivity of Brain Networks and Their Dynamic Interaction in Temporal Lobe Epilepsy , 2015, Brain Connect..

[5]  Mark W. Woolrich,et al.  Network modelling methods for FMRI , 2011, NeuroImage.

[6]  Laura Astolfi,et al.  The physiological plausibility of time-varying Granger-causal modeling: Normalization and weighting by spectral power , 2014, NeuroImage.

[7]  P. Rubé,et al.  L’examen Clinique en Psychologie , 1959 .

[8]  Luiz A. Baccalá,et al.  Partial directed coherence: a new concept in neural structure determination , 2001, Biological Cybernetics.

[9]  Asla Pitkänen,et al.  MR volumetric analysis of the piriform cortex and cortical amygdala in drug-refractory temporal lobe epilepsy. , 2005, AJNR. American journal of neuroradiology.

[10]  David N. Vaughan,et al.  The Piriform Cortex and Human Focal Epilepsy , 2014, Front. Neurol..

[11]  Laura Astolfi,et al.  Assessing cortical functional connectivity by partial directed coherence: simulations and application to real data , 2006, IEEE Transactions on Biomedical Engineering.

[12]  C. Granger Investigating causal relations by econometric models and cross-spectral methods , 1969 .

[13]  Jean Gotman,et al.  Widespread epileptic networks in focal epilepsies: EEG‐fMRI study , 2012, Epilepsia.

[14]  Laura Astolfi,et al.  Tracking the Time-Varying Cortical Connectivity Patterns by Adaptive Multivariate Estimators , 2008, IEEE Transactions on Biomedical Engineering.

[15]  W. M. Carey,et al.  Digital spectral analysis: with applications , 1986 .

[16]  Alois Schlögl,et al.  A comparison of multivariate autoregressive estimators , 2006, Signal Process..

[17]  Georgia Ramantani,et al.  Catching the Invisible: Mesial Temporal Source Contribution to Simultaneous EEG and SEEG Recordings , 2014, Brain Topography.

[18]  Darren Price,et al.  Investigating the electrophysiological basis of resting state networks using magnetoencephalography , 2011, Proceedings of the National Academy of Sciences.

[19]  Katarzyna J. Blinowska,et al.  Review of the methods of determination of directed connectivity from multichannel data , 2011, Medical & Biological Engineering & Computing.

[20]  D Le Bihan,et al.  Bilateral hemispheric alteration of memory processes in right medial temporal lobe epilepsy , 2002, Journal of neurology, neurosurgery, and psychiatry.

[21]  M. Symms,et al.  Levetiracetam reduces abnormal network activations in temporal lobe epilepsy , 2014, Neurology.

[22]  Margitta Seeck,et al.  Dynamic directed interictal connectivity in left and right temporal lobe epilepsy , 2015, Epilepsia.

[23]  Mark P Richardson,et al.  Large scale brain models of epilepsy: dynamics meets connectomics , 2012, Journal of Neurology, Neurosurgery & Psychiatry.

[24]  Dimitri Van De Ville,et al.  BOLD correlates of EEG topography reveal rapid resting-state network dynamics , 2010, NeuroImage.

[25]  J. Gotman,et al.  Patterns of altered functional connectivity in mesial temporal lobe epilepsy , 2012, Epilepsia.

[26]  M. Brázdil,et al.  An optimized voxel‐based morphometric study of gray matter changes in patients with left‐sided and right‐sided mesial temporal lobe epilepsy and hippocampal sclerosis (MTLE/HS) , 2010, Epilepsia.

[27]  A. Schnider,et al.  Rapid consolidation and the human hippocampus: Intracranial recordings confirm surface EEG , 2011, Hippocampus.

[28]  Hans Hallez,et al.  Ictal‐onset localization through connectivity analysis of intracranial EEG signals in patients with refractory epilepsy , 2013, Epilepsia.

[29]  L Lemieux,et al.  Converging PET and fMRI evidence for a common area involved in human focal epilepsies , 2011, Neurology.

[30]  A. Schulze-Bonhage,et al.  Simultaneous subdural and scalp EEG correlates of frontal lobe epileptic sources , 2014, Epilepsia.

[31]  Vinod Menon,et al.  Functional connectivity in the resting brain: A network analysis of the default mode hypothesis , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[32]  M. Posner,et al.  Cognitive and emotional influences in anterior cingulate cortex , 2000, Trends in Cognitive Sciences.

[33]  F. Babiloni,et al.  Estimation of the cortical functional connectivity with the multimodal integration of high-resolution EEG and fMRI data by directed transfer function , 2005, NeuroImage.

[34]  C. Granger Investigating Causal Relations by Econometric Models and Cross-Spectral Methods , 1969 .

[35]  F. H. Lopes da Silva EEG and MEG: relevance to neuroscience. , 2013, Neuron.

[36]  Claudio Pollo,et al.  Electroencephalographic source imaging: a prospective study of 152 operated epileptic patients , 2011, Brain : a journal of neurology.

[37]  F. D. Silva,et al.  EEG and MEG: Relevance to Neuroscience , 2013, Neuron.

[38]  Huafu Chen,et al.  Altered spontaneous neuronal activity of the default-mode network in mesial temporal lobe epilepsy , 2010, Brain Research.

[39]  Stephan U Schuele,et al.  Intractable epilepsy: management and therapeutic alternatives , 2008, The Lancet Neurology.

[40]  J. Schoffelen,et al.  Source connectivity analysis with MEG and EEG , 2009, Human brain mapping.

[41]  Sallie Baxendale,et al.  Predicting Memory Decline Following Epilepsy Surgery: A Multivariate Approach , 2006, Epilepsia.

[42]  F. Lazeyras,et al.  Contralateral medial temporal lobe damage in right but not left temporal lobe epilepsy: a 1H magnetic resonance spectroscopy study , 2003, Journal of neurology, neurosurgery, and psychiatry.

[43]  Jean-Philippe Thiran,et al.  Connectivity and tissue microstructural alterations in right and left temporal lobe epilepsy revealed by diffusion spectrum imaging , 2014, NeuroImage: Clinical.

[44]  A. Kleinschmidt,et al.  Temporal lobe interictal epileptic discharges affect cerebral activity in “default mode” brain regions , 2006, Human brain mapping.

[45]  G L Shulman,et al.  INAUGURAL ARTICLE by a Recently Elected Academy Member:A default mode of brain function , 2001 .