Random data Cauchy theory for the incompressible three dimensional Navier–Stokes equations

We study the existence and uniqueness of the strong solution for the incompressible Navier-Stokes equations with the L 2 initial data and the periodic space domain T 3 . After a suitable randomization, we are able to construct the local unique strong solution for a large set of initial data in L 2 . Furthermore, if ∥u 0 ∥ L 2 is small, we show that the probability for the global existence and uniqueness of the solution is large.

[1]  G. M.,et al.  Partial Differential Equations I , 2023, Applied Mathematical Sciences.

[2]  Hiroshi Fujita,et al.  On the Navier-Stokes initial value problem. I , 1964 .

[3]  Hiroko Morimoto,et al.  On the Navier-Stokes initial value problem , 1974 .

[4]  Takashi Kato,et al.  StrongLp-solutions of the Navier-Stokes equation inRm, with applications to weak solutions , 1984 .

[5]  A. Khintchine Über dyadische Brüche , 1923 .

[6]  H. Amann On the Strong Solvability of the Navier—Stokes Equations , 2000 .

[7]  Herbert Koch,et al.  Well-posedness for the Navier–Stokes Equations , 2001 .

[8]  N. Tzvetkov,et al.  Random data Cauchy theory for supercritical wave equations I: local theory , 2007, 0707.1447.

[9]  E. Hopf,et al.  Über die Anfangswertaufgabe für die hydrodynamischen Grundgleichungen. Erhard Schmidt zu seinem 75. Geburtstag gewidmet , 1950 .

[10]  Jean Leray,et al.  Sur le mouvement d'un liquide visqueux emplissant l'espace , 1934 .

[11]  Y. Meyer,et al.  Solutions auto-similaires des équations de Navier-Stokes , 1994 .

[12]  R. Farwig,et al.  Optimal initial value conditions for the existence of local strong solutions of the Navier–Stokes equations , 2009 .

[13]  R. Paley,et al.  On some series of functions, (3) , 1930, Mathematical Proceedings of the Cambridge Philosophical Society.

[14]  $L^p$ properties for Gaussian random series , 2006, math/0610139.

[15]  Yoshikazu Giga,et al.  Solutions for semilinear parabolic equations in Lp and regularity of weak solutions of the Navier-Stokes system , 1986 .