Random data Cauchy theory for the incompressible three dimensional Navier–Stokes equations

We study the existence and uniqueness of the strong solution for the incompressible Navier-Stokes equations with the L 2 initial data and the periodic space domain T 3 . After a suitable randomization, we are able to construct the local unique strong solution for a large set of initial data in L 2 . Furthermore, if ∥u 0 ∥ L 2 is small, we show that the probability for the global existence and uniqueness of the solution is large.

[1]  R. Farwig,et al.  Optimal initial value conditions for the existence of local strong solutions of the Navier–Stokes equations , 2009 .

[2]  N. Tzvetkov,et al.  Random data Cauchy theory for supercritical wave equations I: local theory , 2007, 0707.1447.

[3]  Albert Y. Zomaya,et al.  Partial Differential Equations , 2007, Explorations in Numerical Analysis.

[4]  A. Ayache,et al.  $L^p$ properties for Gaussian random series , 2006, math/0610139.

[5]  Herbert Koch,et al.  Well-posedness for the Navier–Stokes Equations , 2001 .

[6]  H. Amann On the Strong Solvability of the Navier—Stokes Equations , 2000 .

[7]  T. Cannon Strategies and Tactics for Management post‐MCI Introduction , 1994 .

[8]  Y. Giga Solutions for semilinear parabolic equations in Lp and regularity of weak solutions of the Navier-Stokes system , 1986 .

[9]  Takashi Kato,et al.  StrongLp-solutions of the Navier-Stokes equation inRm, with applications to weak solutions , 1984 .

[10]  Jean Leray,et al.  Sur le mouvement d'un liquide visqueux emplissant l'espace , 1934 .

[11]  R. Paley,et al.  On some series of functions, (3) , 1930, Mathematical Proceedings of the Cambridge Philosophical Society.

[12]  A. Khintchine Über dyadische Brüche , 1923 .

[13]  Y. Meyer,et al.  Solutions auto-similaires des équations de Navier-Stokes , 1994 .

[14]  Hiroko Morimoto,et al.  On the Navier-Stokes initial value problem , 1974 .

[15]  Hiroshi Fujita,et al.  On the Navier-Stokes initial value problem. I , 1964 .

[16]  E. Hopf,et al.  Über die Anfangswertaufgabe für die hydrodynamischen Grundgleichungen. Erhard Schmidt zu seinem 75. Geburtstag gewidmet , 1950 .