Random data Cauchy theory for the incompressible three dimensional Navier–Stokes equations
暂无分享,去创建一个
[1] R. Farwig,et al. Optimal initial value conditions for the existence of local strong solutions of the Navier–Stokes equations , 2009 .
[2] N. Tzvetkov,et al. Random data Cauchy theory for supercritical wave equations I: local theory , 2007, 0707.1447.
[3] Albert Y. Zomaya,et al. Partial Differential Equations , 2007, Explorations in Numerical Analysis.
[4] A. Ayache,et al. $L^p$ properties for Gaussian random series , 2006, math/0610139.
[5] Herbert Koch,et al. Well-posedness for the Navier–Stokes Equations , 2001 .
[6] H. Amann. On the Strong Solvability of the Navier—Stokes Equations , 2000 .
[7] T. Cannon. Strategies and Tactics for Management post‐MCI Introduction , 1994 .
[8] Y. Giga. Solutions for semilinear parabolic equations in Lp and regularity of weak solutions of the Navier-Stokes system , 1986 .
[9] Takashi Kato,et al. StrongLp-solutions of the Navier-Stokes equation inRm, with applications to weak solutions , 1984 .
[10] Jean Leray,et al. Sur le mouvement d'un liquide visqueux emplissant l'espace , 1934 .
[11] R. Paley,et al. On some series of functions, (3) , 1930, Mathematical Proceedings of the Cambridge Philosophical Society.
[12] A. Khintchine. Über dyadische Brüche , 1923 .
[13] Y. Meyer,et al. Solutions auto-similaires des équations de Navier-Stokes , 1994 .
[14] Hiroko Morimoto,et al. On the Navier-Stokes initial value problem , 1974 .
[15] Hiroshi Fujita,et al. On the Navier-Stokes initial value problem. I , 1964 .
[16] E. Hopf,et al. Über die Anfangswertaufgabe für die hydrodynamischen Grundgleichungen. Erhard Schmidt zu seinem 75. Geburtstag gewidmet , 1950 .