On the complexity of evaluating highest weight vectors

Geometric complexity theory (GCT) is an approach towards separating algebraic complexity classes through algebraic geometry and representation theory. Originally Mulmuley and Sohoni proposed (SIAM J Comput 2001, 2008) to use occurrence obstructions to prove Valiant's determinant vs permanent conjecture, but recently Burgisser, Ikenmeyer, and Panova (Journal of the AMS 2019) proved this impossible. However, fundamental theorems of algebraic geometry and representation theory grant that every lower bound in GCT can be proved by the use of so-called highest weight vectors (HWVs). In the setting of interest in GCT (namely in the setting of polynomials) we prove the NP-hardness of the evaluation of HWVs in general, and we give efficient algorithms if the treewidth of the corresponding Young-diagram is small, where the point of evaluation is concisely encoded as a noncommutative algebraic branching program! In particular, this gives a large new class of separating functions that can be efficiently evaluated at points with low (border) Waring rank.

[1]  Christian Ikenmeyer The Saxl conjecture and the dominance order , 2015, Discret. Math..

[2]  Nitin Saxena,et al.  Diagonal Circuit Identity Testing and Lower Bounds , 2008, ICALP.

[3]  Robin Thomas,et al.  Quickly Excluding a Planar Graph , 1994, J. Comb. Theory, Ser. B.

[4]  Luke Oeding,et al.  Tangential varieties of Segre–Veronese varieties , 2011 .

[5]  Jonathan D. Hauenstein,et al.  Computations and Equations for Segre-Grassmann hypersurfaces , 2014 .

[6]  Claudiu Raicu,et al.  3× 3 MINORS OF CATALECTICANTS , 2010 .

[7]  Greta Panova,et al.  Geometric complexity theory and matrix powering , 2016, Differential Geometry and its Applications.

[8]  Joshua A. Grochow,et al.  Boundaries of VP and VNP , 2016, ICALP.

[9]  Enrico Carlini,et al.  The solution to the Waring problem for monomials and the sum of coprime monomials , 2012 .

[10]  Karl Bringmann,et al.  On Algebraic Branching Programs of Small Width , 2017, Electron. Colloquium Comput. Complex..

[11]  Abdelmalek Abdesselam Feynman Diagrams in Algebraic Combinatorics , 2002 .

[12]  Giorgio Ottaviani,et al.  Five Lectures on Projective Invariants , 2013, 1305.2749.

[13]  Mrinal Kumar On top fan-in vs formal degree for depth-3 arithmetic circuits , 2018, Electron. Colloquium Comput. Complex..

[14]  Russell Impagliazzo,et al.  Which problems have strongly exponential complexity? , 1998, Proceedings 39th Annual Symposium on Foundations of Computer Science (Cat. No.98CB36280).

[15]  Ketan Mulmuley,et al.  Geometric Complexity Theory I: An Approach to the P vs. NP and Related Problems , 2002, SIAM J. Comput..

[16]  A. Iarrobino,et al.  Power Sums, Gorenstein Algebras, and Determinantal Loci , 2000 .

[17]  J. Landsberg,et al.  Polynomials and the exponent of matrix multiplication , 2017, 1706.05074.

[18]  Michael A. Forbes Polynomial identity testing of read-once oblivious algebraic branching programs , 2014 .

[19]  Y. Shitov How hard is the tensor rank , 2016, 1611.01559.

[20]  Grazia Lotti,et al.  O(n2.7799) Complexity for n*n Approximate Matrix Multiplication , 1979, Inf. Process. Lett..

[21]  Charles Hermite,et al.  Œuvres de Charles Hermite: Sur la théorie des fonctions homogènes à deux indéterminées , 2009 .

[22]  Ioannis G. Tollis,et al.  Planar grid embedding in linear time , 1989 .

[23]  Christian Ikenmeyer,et al.  Implementing geometric complexity theory: on the separation of orbit closures via symmetries , 2019, STOC.

[24]  J. M. Landsberg,et al.  An Overview of Mathematical Issues Arising in the Geometric Complexity Theory Approach to VP≠VNP , 2009, SIAM J. Comput..

[25]  Steven V. Sam,et al.  Proof of Stembridge’s conjecture on stability of Kronecker coefficients , 2015, 1501.00333.

[26]  Michael Walter,et al.  Computing Multiplicities of Lie Group Representations , 2012, 2012 IEEE 53rd Annual Symposium on Foundations of Computer Science.

[27]  M. V. Leeuwen,et al.  Lie : a package for Lie group computations , 1992 .

[28]  C. Bessenrodt,et al.  The classification of multiplicity-free plethysms of Schur functions , 2020, 2001.08763.

[29]  Claudiu Raicu,et al.  3x3 Minors of Catalecticants , 2010, 1011.1564.

[30]  David S. Johnson,et al.  Some Simplified NP-Complete Graph Problems , 1976, Theor. Comput. Sci..

[31]  Peter Bürgisser,et al.  Fundamental invariants of orbit closures , 2015, ArXiv.

[32]  Shrawan Kumar,et al.  A study of the representations supported by the orbit closure of the determinant , 2011, Compositio Mathematica.

[33]  Laurent Manivel,et al.  Effective Constructions in Plethysms and Weintraub’s Conjecture , 2012, 1207.5748.

[34]  Christine Bessenrodt,et al.  On the Durfee size of Kronecker products of characters of the symmetric group and its double covers , 2004 .

[35]  Christian Ikenmeyer,et al.  Symmetrizing tableaux and the 5th case of the Foulkes conjecture , 2015, J. Symb. Comput..

[36]  Greta Panova,et al.  On geometric complexity theory: Multiplicity obstructions are stronger than occurrence obstructions , 2019, ICALP.

[37]  Greta Panova,et al.  No Occurrence Obstructions in Geometric Complexity Theory , 2016, 2016 IEEE 57th Annual Symposium on Foundations of Computer Science (FOCS).

[38]  Martin E. Dyer,et al.  On Approximately Counting Colorings of Small Degree Graphs , 1999, SIAM J. Comput..

[39]  Luke Oeding,et al.  Toward a Salmon Conjecture , 2010, Exp. Math..

[40]  Ketan Mulmuley,et al.  Geometric Complexity Theory II: Towards Explicit Obstructions for Embeddings among Class Varieties , 2006, SIAM J. Comput..

[41]  Christian Ikenmeyer,et al.  The Computational Complexity of Plethysm Coefficients , 2020, computational complexity.

[42]  J. Landsberg Tensors: Geometry and Applications , 2011 .

[43]  Fulvio Gesmundo,et al.  Geometric aspects of Iterated Matrix Multiplication , 2015, 1512.00766.

[44]  Matthias Christandl,et al.  Even partitions in plethysms , 2010, 1003.4474.

[45]  Peter Bürgisser,et al.  The Complexity of Factors of Multivariate Polynomials , 2001, Found. Comput. Math..

[46]  J. M. Landsberg,et al.  Geometric complexity theory: an introduction for geometers , 2013, ANNALI DELL'UNIVERSITA' DI FERRARA.

[47]  Abdelmalek Abdesselam,et al.  16,051 formulas for Ottaviani's invariant of cubic threefolds , 2014 .

[48]  Dario Bini Relations between exact and approximate bilinear algorithms. Applications , 1980 .

[49]  Liming Cai,et al.  Subexponential Parameterized Algorithms Collapse the W-Hierarchy , 2001, ICALP.

[50]  Noam Nisan,et al.  Lower bounds for non-commutative computation , 1991, STOC '91.

[51]  J. M. Landsberg,et al.  Connections between conjectures of Alon-Tarsi, Hadamard-Howe, and integrals over the special unitary group , 2014, Discret. Math..