Linkage analysis using whole exome sequencing data implicates SLC17A1, SLC17A3, TATDN2 and TMEM131L in type 1 diabetes in Kuwaiti families

[1]  M. Haider,et al.  Association of interleukin-4, interleukin-13 gene polymorphisms, HLA-DQ and DR genotypes with genetic susceptibility of type-1 Diabetes Mellitus in Kuwaiti children , 2023, Frontiers in Pediatrics.

[2]  T. Thanaraj,et al.  Differentially methylated and expressed genes in familial type 1 diabetes , 2022, Scientific Reports.

[3]  B. Xue,et al.  Diverse and Complementary Effects of Ghrelin and Obestatin , 2022, Biomolecules.

[4]  Yafen Chen,et al.  The Wnt Signaling Pathway in Diabetic Nephropathy , 2022, Frontiers in Cell and Developmental Biology.

[5]  F. Al-Mulla,et al.  Identification of Maturity-Onset-Diabetes of the Young (MODY) mutations in a country where diabetes is endemic , 2021, Scientific Reports.

[6]  I. Khan Do second generation sequencing techniques identify documented genetic markers for neonatal diabetes mellitus? , 2021, Heliyon.

[7]  Wei Zhao,et al.  Emerging Roles of MHC Class I Region-Encoded E3 Ubiquitin Ligases in Innate Immunity , 2021, Frontiers in Immunology.

[8]  M. Pellegrini,et al.  IRAK2 has a critical role in promoting feed-forward amplification of epidermal inflammatory responses. , 2021, The Journal of investigative dermatology.

[9]  K. Morgan,et al.  Variants in urate transporters, ADH1B, GCKR and MEPE genes associate with transition from asymptomatic hyperuricaemia to gout: results of the first gout versus asymptomatic hyperuricaemia GWAS in Caucasians using data from the UK Biobank , 2021, Annals of the Rheumatic Diseases.

[10]  L. Ongaro,et al.  Unraveling a fine-scale high genetic heterogeneity and recent continental connections of an Arabian Peninsula population , 2021, European Journal of Human Genetics.

[11]  A. Ghasemi Uric acid‐induced pancreatic β-cell dysfunction , 2021, BMC Endocrine Disorders.

[12]  Amy S. Shah,et al.  Fine-mapping, trans-ancestral, and genomic analyses identify causal variants, cells, genes, and drug targets for type 1 diabetes , 2020, Nature Genetics.

[13]  C. Winkler,et al.  Polygenic analysis of the effect of common and low-frequency genetic variants on serum uric acid levels in Korean individuals , 2020, Scientific Reports.

[14]  K. Modarage,et al.  The Role of Wnt Signalling in Chronic Kidney Disease (CKD) , 2020, Genes.

[15]  M. Mobasseri,et al.  Prevalence and incidence of type 1 diabetes in the world: a systematic review and meta-analysis , 2020, Health promotion perspectives.

[16]  F. Kronenberg,et al.  Genetic studies of urinary metabolites illuminate mechanisms of detoxification and excretion in humans , 2020, Nature Genetics.

[17]  M. Černá Epigenetic Regulation in Etiology of Type 1 Diabetes Mellitus , 2019, International journal of molecular sciences.

[18]  L. Davidsson,et al.  Incidence of Type 2 Diabetes in Kuwaiti Children and Adolescents: Results From the Childhood-Onset Diabetes Electronic Registry (CODeR) , 2019, Front. Endocrinol..

[19]  H. Hakonarson,et al.  The Genetic Contribution to Type 1 Diabetes , 2019, Current Diabetes Reports.

[20]  S. Esposito,et al.  Environmental Factors Associated With Type 1 Diabetes , 2019, Front. Endocrinol..

[21]  G. Dhaunsi,et al.  Relationship of four vitamin D receptor gene polymorphisms with type 1 diabetes mellitus susceptibility in Kuwaiti children , 2019, BMC Pediatrics.

[22]  Helen E. Parkinson,et al.  The NHGRI-EBI GWAS Catalog of published genome-wide association studies, targeted arrays and summary statistics 2019 , 2018, Nucleic Acids Res..

[23]  Paul J. Hoover,et al.  An eQTL landscape of kidney tissue in human nephrotic syndrome , 2018, bioRxiv.

[24]  L. Philipson,et al.  Monogenic Diabetes in Children and Adolescents: Recognition and Treatment Options , 2018, Current Diabetes Reports.

[25]  M. Redondo,et al.  Genetics of type 1 diabetes , 2018, Pediatric diabetes.

[26]  M. Kanai,et al.  Genetic analysis of quantitative traits in the Japanese population links cell types to complex human diseases , 2018, Nature Genetics.

[27]  F. Pociot Type 1 diabetes genome-wide association studies: not to be lost in translation , 2017, Clinical & translational immunology.

[28]  J. Tuomilehto,et al.  Incidence of type 1 diabetes has doubled in Kuwaiti children 0‐14 years over the last 20 years , 2017, Pediatric diabetes.

[29]  M. Redondo,et al.  Genetic Risk Scores for Type 1 Diabetes Prediction and Diagnosis , 2017, Current Diabetes Reports.

[30]  Nicola J. Rinaldi,et al.  Genetic effects on gene expression across human tissues , 2017, Nature.

[31]  T. Orchard,et al.  Cumulative Kidney Complication Risk by 50 Years of Type 1 Diabetes: The Effects of Sex, Age, and Calendar Year at Onset , 2017, Diabetes Care.

[32]  H. Shu,et al.  Multifaceted roles of TRIM38 in innate immune and inflammatory responses , 2017, Cellular & Molecular Immunology.

[33]  A. Bennakhi,et al.  Prevalence of childhood obesity in the state of Kuwait , 2016, Pediatric obesity.

[34]  T. Thanaraj,et al.  Ketoacidosis at first presentation of type 1 diabetes mellitus among children: a study from Kuwait , 2016, Scientific Reports.

[35]  Tom R. Gaunt,et al.  Systematic identification of genetic influences on methylation across the human life course , 2016, Genome Biology.

[36]  H. Zayed Genetic Epidemiology of Type 1 Diabetes in the 22 Arab Countries , 2016, Current Diabetes Reports.

[37]  D. Rawlings,et al.  The Role of PTPN22 Risk Variant in the Development of Autoimmunity: Finding Common Ground between Mouse and Human , 2015, The Journal of Immunology.

[38]  N. Shinomiya,et al.  NPT1/SLC17A1 Is a Renal Urate Exporter in Humans and Its Common Gain‐of‐Function Variant Decreases the Risk of Renal Underexcretion Gout , 2015, Arthritis & rheumatology.

[39]  L. Al-Gazali,et al.  Consanguinity and Dysmorphology in Arabs , 2014, Human Heredity.

[40]  Alejandro A. Schäffer,et al.  PSEUDOMARKER 2.0: efficient computation of likelihoods using NOMAD , 2014, BMC Bioinformatics.

[41]  E. Bonifacio,et al.  Seroconversion to multiple islet autoantibodies and risk of progression to diabetes in children. , 2013, JAMA.

[42]  Youmin Wang,et al.  Association of cytotoxic T-lymphocyte associated antigen 4 gene polymorphism with type 1 diabetes mellitus: A meta-analysis , 2012 .

[43]  H. Stefánsson,et al.  Identification of low-frequency variants associated with gout and serum uric acid levels , 2011, Nature Genetics.

[44]  Alejandro A. Schäffer,et al.  PSEUDOMARKER: A Powerful Program for Joint Linkage and/or Linkage Disequilibrium Analysis on Mixtures of Singletons and Related Individuals , 2011, Human Heredity.

[45]  M. Rewers,et al.  Genetics of type 1 diabetes. , 2011, Clinical chemistry.

[46]  Josyf Mychaleckyj,et al.  Robust relationship inference in genome-wide association studies , 2010, Bioinform..

[47]  John A. Todd,et al.  Genetics of Type 1 Diabetes: What's Next? , 2010, Diabetes.

[48]  A. Galecki,et al.  High-Normal Serum Uric Acid Increases Risk of Early Progressive Renal Function Loss in Type 1 Diabetes , 2010, Diabetes Care.

[49]  I. Kolčić,et al.  Common variants in SLC17A3 gene affect intra-personal variation in serum uric acid levels in longitudinal time series. , 2010, Croatian medical journal.

[50]  V. Gersuk,et al.  Insulin gene VNTR genotype associates with frequency and phenotype of the autoimmune response to proinsulin , 2010, Genes and Immunity.

[51]  H. Parving,et al.  Serum Uric Acid as a Predictor for Development of Diabetic Nephropathy in Type 1 Diabetes , 2009, Diabetes.

[52]  M. Rewers,et al.  IFIH1 polymorphisms are significantly associated with type 1 diabetes and IFIH1 gene expression in peripheral blood mononuclear cells. , 2008, Human molecular genetics.

[53]  Osamu Takeuchi,et al.  Sequential control of Toll-like receptor–dependent responses by IRAK1 and IRAK2 , 2008, Nature Immunology.

[54]  Jack A. Taylor,et al.  TAGster: efficient selection of LD tag SNPs in single or multiple populations , 2007, Bioinform..

[55]  P. Walter,et al.  Intracellular signaling by the unfolded protein response. , 2006, Annual review of cell and developmental biology.

[56]  M. Rewers,et al.  Extreme genetic risk for type 1A diabetes , 2006, Proceedings of the National Academy of Sciences.

[57]  J. Todd,et al.  Analysis of polymorphisms in 16 genes in type 1 diabetes that have been associated with other immune-mediated diseases , 2006, BMC Medical Genetics.

[58]  R. Hanson,et al.  The 1997 American Diabetes Association and 1999 World Health Organization criteria for hyperglycemia in the diagnosis and prediction of diabetes. , 2000, Diabetes care.

[59]  J. Dorman,et al.  Prevalence of human leukocyte antigen DQA1 and DQB1 alleles in Kuwaiti Arab children with type 1 diabetes mellitus , 1999, Clinical genetics.

[60]  E. Lander,et al.  Genetic dissection of complex traits: guidelines for interpreting and reporting linkage results , 1995, Nature Genetics.

[61]  S. Al‐Awadi,et al.  Consanguinity among the Kuwaiti population , 1985, Clinical genetics.

[62]  T. Zhou,et al.  Implication of dysregulation of the canonical wingless-type MMTV integration site (WNT) pathway in diabetic nephropathy , 2011, Diabetologia.