Identification of Errors-in-Variables ARX Models Using Modified Dynamic Iterative PCA

Identification of autoregressive models with exogenous input (ARX) is a classical problem in system identification. This article considers the errors-in-variables (EIV) ARX model identification problem, where input measurements are also corrupted with noise. The recently proposed DIPCA technique solves the EIV identification problem but is only applicable to white measurement errors. We propose a novel identification algorithm based on a modified Dynamic Iterative Principal Components Analysis (DIPCA) approach for identifying the EIV-ARX model for single-input, single-output (SISO) systems where the output measurements are corrupted with coloured noise consistent with the ARX model. Most of the existing methods assume important parameters like input-output orders, delay, or noise-variances to be known. This work's novelty lies in the joint estimation of error variances, process order, delay, and model parameters. The central idea used to obtain all these parameters in a theoretically rigorous manner is based on transforming the lagged measurements using the appropriate error covariance matrix, which is obtained using estimated error variances and model parameters. Simulation studies on two systems are presented to demonstrate the efficacy of the proposed algorithm.

[1]  Yucai Zhu,et al.  A Method of ARX Model Estimation of Errors-in-Variables Systems , 2015 .

[2]  Han-Fu Chen,et al.  Recursive identification for multivariate errors-in-variables systems , 2007, Autom..

[3]  Darren T. Andrews,et al.  Maximum likelihood principal component analysis , 1997 .

[4]  Torsten Söderström,et al.  Identification of stochastic linear systems in presence of input noise , 1981, Autom..

[5]  Wei Xing Zheng,et al.  A bias correction method for identification of linear dynamic errors-in-variables models , 2002, IEEE Trans. Autom. Control..

[6]  Roberto Guidorzi,et al.  The Frisch scheme in multivariable errors-in-variables identification , 2017, Eur. J. Control.

[7]  Yucai Zhu,et al.  ARX Model Estimation of Multivariable Errors-in-Variables Systems , 2018 .

[8]  S. Narasimhan,et al.  Identification of Linear Dynamic Systems using Dynamic Iterative Principal Component Analysis , 2016 .

[9]  Torsten Söderström,et al.  A generalized instrumental variable estimation method for errors-in-variables identification problems , 2011, Autom..

[10]  Calyampudi R. Rao The use and interpretation of principal component analysis in applied research , 1964 .

[11]  Identification of Errors-in-Variables Models Using Dynamic Iterative Principal Component Analysis , 2018, Industrial & Engineering Chemistry Research.

[12]  Umberto Soverini,et al.  Maximum likelihood identification of noisy input-output models , 2007, Autom..

[13]  Lennart Ljung,et al.  System Identification: Theory for the User , 1987 .

[14]  Satheesh K. Perepu,et al.  Identification of Equation Error Models from Small Samples using Compressed Sensing Techniques , 2015 .

[15]  Petre Stoica,et al.  Combined instrumental variable and subspace fitting approach to parameter estimation of noisy input-output systems , 1995, IEEE Trans. Signal Process..

[16]  Kiyoshi Wada,et al.  Identification of noisy input-output system using bias-compensated least-squares method , 2005 .

[17]  Umberto Soverini,et al.  Identification of ARX and ARARX Models in the Presence of Input and Output Noises , 2010, Eur. J. Control.

[18]  Alexandru Forrai,et al.  System Identification and Fault Diagnosis of an Electromagnetic Actuator , 2017, IEEE Transactions on Control Systems Technology.

[19]  Arun K. Tangirala,et al.  Optimal Filtering and Residual Analysis in Errors-in-variables Model Identification , 2020 .

[20]  William T. Hale,et al.  Active Fault Identification by Optimization of Test Designs , 2019, IEEE Transactions on Control Systems Technology.

[21]  B. F. Spencer,et al.  Frequency domain system identification for controlled civil engineering structures , 2005, IEEE Transactions on Control Systems Technology.

[22]  Torsten Söderström,et al.  Errors-in-variables methods in system identification , 2018, Autom..

[23]  Sabine Van Huffel,et al.  Total Least Squares and Errors- In-Variables Modeling: Bridging the Gap Between Statistics, Computational Mathematics and Engineering , 2002 .

[24]  Sirish L. Shah,et al.  Model Identification and Error Covariance Matrix Estimation from Noisy Data Using PCA , 2004 .

[25]  K. Fernando,et al.  Identification of linear systems with input and output noise: the Koopmans-Levin method , 1985 .

[26]  Christos Georgakis,et al.  Disturbance detection and isolation by dynamic principal component analysis , 1995 .